ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Постройте квадрат ABCD , если даны его вершина A и расстояния от вершин B и D до фиксированной точки плоскости O .

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 57921

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Два квадрата BCDA и BKMN имеют общую вершину B. Докажите, что медиана BE треугольника ABK и высота BF треугольника CBN лежат на одной прямой. (Вершины обоих квадратов перечислены по часовой стрелке.)
Прислать комментарий     Решение


Задача 111710

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Четырехугольники (построения) ]
Сложность: 4-
Классы: 8,9

Постройте квадрат ABCD , если даны его вершина A и расстояния от вершин B и D до фиксированной точки плоскости O .
Прислать комментарий     Решение


Задача 57924

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

На плоскости даны три (одинаково ориентированных) квадрата: ABCD, AB1C1D1 и  A2B2CD2; первый квадрат имеет с двумя другими общие вершины A и C. Докажите, что медиана BM треугольника BB1B2 перпендикулярна отрезку D1D2.
Прислать комментарий     Решение


Задача 115597

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

На сторонах треугольника ABC как на гипотенузах строятся во внешнюю сторону равнобедренные прямоугольные треугольники ABD , BCE и ACF . Докажите, что отрезки DE и BF равны и перпендикулярны.
Прислать комментарий     Решение


Задача 115601

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Вспомогательная окружность ]
Сложность: 4
Классы: 8,9

$CD$ —биссектриса прямого угла треугольника $ABC$. $DE$ и $DK$ — биссектрисы треугольников $ADC$ и $BDC$. Докажите, что $AD^2+BD^2=(AE+BK)^2$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .