ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка D на стороне BC треугольника ABC такова, что радиусы вписанных окружностей треугольников ABD и ACD равны. Докажите, что радиусы окружностей, вневписанных в треугольники ABD и ACD , касающихся соответственно отрезков BD и CD , также равны.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 373]      



Задача 57997

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Построение треугольников по различным элементам ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 9,10

Постройте треугольник ABC по сторонам AB и AC и биссектрисе AD.
Прислать комментарий     Решение


Задача 108501

Темы:   [ Подобные фигуры ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

В равнобедренной трапеции с основаниями 1 и 4 расположены две окружности, каждая из которых касается другой окружности, двух боковых сторон и одного из оснований. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 108502

Темы:   [ Подобные фигуры ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

В равнобедренной трапеции с основаниями 1 и 9 расположены две окружности, каждая из которых касается другой окружности, двух боковых сторон и одного из оснований. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 111775

Темы:   [ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 9,10,11

Точка D на стороне BC треугольника ABC такова, что радиусы вписанных окружностей треугольников ABD и ACD равны. Докажите, что радиусы окружностей, вневписанных в треугольники ABD и ACD , касающихся соответственно отрезков BD и CD , также равны.
Прислать комментарий     Решение


Задача 35035

Темы:   [ Гомотетичные окружности ]
[ Инверсия помогает решить задачу ]
Сложность: 4-
Классы: 9,10

На плоскости дана окружность S и фиксирована некоторая дуга AСB (С - точка на дуге AB) этой окружности. Некоторая окружность S' касается хорды AB в точке P и дуги ACB в точке Q. Докажите, что прямые PQ проходят через фиксированную точку плоскости независимо от выбора окружности S'.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 373]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .