Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

В первый день Маша собрала на 25% грибов меньше, чем Вася, а во второй – на 20% больше, чем Вася. За два дня Маша собрала грибов на 10% больше, чем Вася. Какое наименьшее количество грибов они могли собрать вместе?

Вниз   Решение


Непрерывная функция f(x) такова, что для всех действительных x выполняется неравенство: f(x2)-(f(x))2 . Верно ли, что функция f(x) обязательно имеет точки экстремума?

ВверхВниз   Решение


Найдите все пары чисел x,y (0;) , удовлетворяющие равенству sin x+ sin y= sin(xy) .

ВверхВниз   Решение


Окружность с центром в точке M(3;1) проходит через начало координат. Составьте уравнение окружности.

ВверхВниз   Решение


Изначально на доске были написаны одночленs  1, x, x², ..., xn.  Договорившись заранее, k мальчиков каждую минуту одновременно вычисляли каждый сумму каких-то двух многочленов, написанных на доске, и результат дописывали на доску. Через m минут на доске были написаны, среди прочих, многочлены  S1 = 1 + x,  S2 = 1 + x + x²,  S3 = 1 + x + x² + x3,  ...,  Sn = 1 + x + x² + ... + xn.  Докажите, что  

ВверхВниз   Решение


Даны точки A(0;0), B(- 2;1), C(3;3), D(2; - 1) и окружность (x - 1)2 + (y + 3)2 = 25. Выясните, где расположены эти точки: на окружности, внутри или вне окружности.

ВверхВниз   Решение


Две окружности с радиусами 1 и 2 имеют общий центр в точке O. Вершина A правильного треугольника ABC лежит на большей окружности, а середина стороны BC – на меньшей. Чему может быть равен угол BOC?

ВверхВниз   Решение


Какие значения может принимать разность возрастающей арифметической прогрессии a1, a2,..., a5, все члены которой принадлежат отрезку [0; 3π/2], если числа cos a1, cos a2, cos a3, а также числа sin a3, sin a4 и sin a5 в некотором порядке тоже образуют арифметические прогрессии.

ВверхВниз   Решение


Углы треугольника α, β, γ удовлетворяют неравенствам sin α > cos β, sin β > cos γ, sin γ > cos α . Докажите, что треугольник остроугольный.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]      



Задача 65919

Темы:   [ Правильные многоугольники ]
[ Теорема косинусов ]
[ Тригонометрические неравенства ]
Сложность: 3+
Классы: 10,11

Правильный пятиугольник и правильный двадцатиугольник вписаны в одну и ту же окружность.
Что больше: сумма квадратов длин всех сторон пятиугольника или сумма квадратов длин всех сторон двадцатиугольника?

Прислать комментарий     Решение

Задача 110173

Темы:   [ Тригонометрические уравнения ]
[ Монотонность и ограниченность ]
[ Тригонометрические неравенства ]
Сложность: 3+
Классы: 9,10,11

Найдите все пары чисел x,y (0;) , удовлетворяющие равенству sin x+ sin y= sin(xy) .
Прислать комментарий     Решение


Задача 105215

Темы:   [ Арифметическая прогрессия ]
[ Тождественные преобразования (тригонометрия) ]
[ Тригонометрические неравенства ]
[ Перебор случаев ]
Сложность: 3+
Классы: 9,10,11

Какие значения может принимать разность возрастающей арифметической прогрессии a1, a2,..., a5, все члены которой принадлежат отрезку [0; 3π/2], если числа cos a1, cos a2, cos a3, а также числа sin a3, sin a4 и sin a5 в некотором порядке тоже образуют арифметические прогрессии.

Прислать комментарий     Решение

Задача 79520

Темы:   [ Тригонометрические замены ]
[ Алгебраические неравенства (прочее) ]
[ Тригонометрические неравенства ]
Сложность: 5-
Классы: 10,11

а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два числа x и y, что  0 ≤ ≤ 1.
б) Верно ли, что указанные два числа можно выбрать из любых четырёх чисел?

Прислать комментарий     Решение

Задача 115353

Темы:   [ Неравенства для углов треугольника ]
[ Доказательство от противного ]
[ Монотонность и ограниченность ]
[ Тригонометрические неравенства ]
Сложность: 3+
Классы: 9,10,11

Углы треугольника α, β, γ удовлетворяют неравенствам sin α > cos β, sin β > cos γ, sin γ > cos α . Докажите, что треугольник остроугольный.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .