|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В треугольнике ABC на стороне AC взята точка D. Окружности, вписанные в треугольники ABD и BCD, касаются стороны AC в точках M и N соответственно. Известно, что AM = 3, MD = 2, DN = 2, NC = 4. Найдите стороны треугольника ABC.
Диагонали вписанного четырёхугольника ABCD пересекаются в точке P. Пусть K, L, M, N – середины соответственно сторон AB, BC, CD, AD. В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B. Углы треугольника α, β, γ удовлетворяют неравенствам sin α > cos β, sin β > cos γ, sin γ > cos α . Докажите, что треугольник остроугольный. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]
Правильный пятиугольник и правильный двадцатиугольник вписаны в одну и ту же окружность.
Какие значения может принимать разность возрастающей арифметической прогрессии a1, a2,..., a5, все члены которой принадлежат отрезку [0; 3π/2], если числа cos a1, cos a2, cos a3, а также числа sin a3, sin a4 и sin a5 в некотором порядке тоже образуют арифметические прогрессии.
а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два
числа x и y, что 0 ≤
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|