ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите объём тетраэдра ABCD с рёбрами AB=3 , AC=5 и BD = 7 , если расстояние между серединами M и N его рёбер AB и CD равно 2, а прямая AB образует равные углы с прямыми AC , BD и MN . В треугольнике ABC угол A равен 60o ; AB:AC=3:2 . На сторонах AB и AC расположены соответственно точки M и N так, что BM=MN=NC . Найдите отношение площади треугольника AMN к площади треугольника ABC . Найдите объём тетраэдра ABCD с рёбрами AB=5 , AC=1 и CD = 7 , если расстояние между серединами M и N его рёбер AC и BD равно 3, а прямая AC образует равные углы с прямыми AB , CD и MN . Можно ли разрезать на четыре остроугольных треугольника На доске написано n выражений вида *x² + *x + * = 0 (n – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3n ходов получится n квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?
Первая окружность с центром в точке A касается сторон угла KOL в точках K и L.
Вторая окружность с центром в точке B касается отрезка OK, луча LK
и продолжения стороны угла OL за точку O. Известно, что отношение радиуса
первой окружности к радиусу второй окружности равно
В треугольнике ABC AB=15 , BC=8 , CA=9 . Точка D лежит на прямой BC так, что BD:DC=3:8 . Окружности, вписанные в треугольники ADC и ADB , касаются стороны AD в точках E и F . Найдите длину отрезка EF . |
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 772]
В треугольнике ABC AB=15 , BC=8 , CA=9 . Точка D лежит на прямой BC так, что BD:DC=3:8 . Окружности, вписанные в треугольники ADC и ADB , касаются стороны AD в точках E и F . Найдите длину отрезка EF .
На стороне AC треугольника ABC выбрана точка X . Докажите, что если вписанные окружности треугольников ABX и BCX касаются друг друга, то точка X лежит на окружности, вписанной в треугольник ABC .
Точка M находится внутри диаметра AB окружности и отлична от центра окружности. По одну сторону от этого диаметра на окружности взяты произвольные различные точки P и Q , причём отрезки PM и QM образуют равные углы с диаметром. Докажите, что все прямые PQ проходят через одну точку.
Окружность радиуса 3 проходит через вершину B , середины
сторон AB и BC , а также касается стороны AC треугольника
ABC . Угол BAC — острый, и sin
К двум непересекающимся окружностям ω1 и ω2 проведены три общие касательные – две внешние, a и b, и одна внутренняя, c. Прямые a, b и c касаются окружности ω1 в точках A1, B1 и C1 соответственно, а окружности ω2 – в точках A2, B2 и C2 соответственно. Докажите, что отношение площадей треугольников A1B1C1 и A2B2C2 равно отношению радиусов окружностей ω1 и ω2.
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 772]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке