Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Иванова Е.

В шахматном турнире на звание мастера спорта участвовало 12 человек, каждый сыграл с каждым по одной партии. За победу в партии даётся 1 очко, за ничью – 0,5 очка, за поражение – 0 очков. По итогам турнира звание мастера спорта присваивали, если участник набрал более 70% от числа очков, получаемых в случае выигрыша всех партий. Могли ли получить звание мастера спорта
  а) 7 участников;
  б) 8 участников?

Вниз   Решение


Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AC = BC)  точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые OD и BI перпендикулярны. Докажите, что прямые ID и AC параллельны.

ВверхВниз   Решение


Провести хорду данной окружности, параллельную данному диаметру, так, чтобы эта хорда и диаметр были основаниями трапеций с наибольшим периметром.

ВверхВниз   Решение


Докажите, что любой выпуклый n-угольник, где n$ \ge$6, можно разрезать на выпуклые пятиугольники.

ВверхВниз   Решение


Найти геометрическое место середин отрезков с концами на двух различных непересекающихся окружностях, лежащих одна вне другой.

ВверхВниз   Решение


Центры четырёх окружностей S1 , S2 , S3 и S4 лежат на окружности S . Окружности S1 и S2 пересекаются в точках A1 и B1 , S2 и S3 – в точках A2 и B2 , S3 и S4 – в точках A3 и B3 , окружности S4 и S1 – в точках A4 и B4 , причём точки A1 , A2 , A3 и A4 лежат на окружности S , а точки B1 , B2 , B3 и B4 различны и лежат внутри S . Докажите, что B1B2B3B4 – прямоугольник.

ВверхВниз   Решение


Число n называется совершенным, если  σ(n) = 2n.
Докажите, что если  2k – 1 = p  – некоторое простое число Мерсенна, то  n = 2k–1(2k – 1)  – совершенное число.

ВверхВниз   Решение


Биссектрисы AD и CE треугольника ABC пересекаются в точке F . Известно, что точки B , D , E и F лежат на одной окружности. Докажите, что радиус этой окружности не меньше радиуса вписанной в этот треугольник окружности.

Вверх   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 375]      



Задача 115595

Темы:   [ Неравенства с медианами ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 8,9

Сумма расстояний между серединами противоположных сторон четырёхугольника равна его полупериметру. Докажите, что этот четырёхугольник — параллелограмм.
Прислать комментарий     Решение


Задача 115600

Темы:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4
Классы: 8,9

В остроугольный треугольник ABC помещены две касающиеся окружности. Одна из них касается сторон AC и BC , а вторая — сторон AB и BC . Докажите, что сумма их радиусов больше радиуса окружности, вписанной в треугольник ABC .
Прислать комментарий     Решение


Задача 115605

Темы:   [ Неравенства для углов треугольника ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

На окружности с центром O лежит точка X . На диаметре, выходящем из точки X , возьмём точку Y так, чтобы точка O лежала между X и Y . Требуется провести через точку Y хорду AB так, чтобы угол AXB был минимален.
Прислать комментарий     Решение


Задача 115606

Темы:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Углы между биссектрисами ]
[ Вписанные четырехугольники ]
Сложность: 4
Классы: 8,9

Биссектрисы AD и CE треугольника ABC пересекаются в точке F . Известно, что точки B , D , E и F лежат на одной окружности. Докажите, что радиус этой окружности не меньше радиуса вписанной в этот треугольник окружности.
Прислать комментарий     Решение


Задача 115647

Темы:   [ Длины сторон (неравенства) ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 8,9

Каждый катет прямоугольного треугольника увеличили на единицу. Может ли его гипотенуза увеличиться более, чем на ?
Прислать комментарий     Решение


Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 375]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .