Страница:
<< 15 16 17 18 19
20 21 >> [Всего задач: 101]
|
|
Сложность: 4 Классы: 9,10,11
|
На плоскости дано n фигур. Пусть Si1...ik – площадь пересечения фигур с номерами
i1, ..., ik, a S – площадь части плоскости, покрытой данными фигурами; Mk – сумма всех чисел Si1...ik. Докажите, что:
а) S = M1 – M2 + M3 – ... + (–1)n + 1Mn;
б) S ≥ M1 - M2 + M3 – ... + (–1)m + 1Mm при m чётном и
S ≤ M1 – M2 + M3 – ... + (–1)m + 1Mm при m нечётном.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Правильный $n$-угольник со стороной 1 вращается вокруг другого такого же $n$-угольника, как показано на рисунке. Последовательные положения одной из его вершин в моменты, когда $n$-угольники имеют общую сторону, образуют замкнутую ломаную $\kappa$.
Докажите, что $\kappa$ ограничивает площадь, равную $6A - 2B$, где $A$, $B$ – площади правильных $n$-угольников с единичными стороной и радиусом описанной окружности соответственно.
|
|
Сложность: 4 Классы: 10,11
|
Треугольное сечение куба касается вписанного в куб шара. Докажите, что площадь
этого сечения меньше половины площади грани куба.
Дан выпуклый шестиугольник, каждая диагональ которого, соединяющая противоположные вершины, делит его площадь пополам.
Докажите, что эти диагонали пересекаются в одной точке.
|
|
Сложность: 4+ Классы: 8,9,10
|
Дан угол
XAY и точка
O внутри его. Проведите через точку
O
прямую, отсекающую от данного угла треугольник наименьшей площади.
Страница:
<< 15 16 17 18 19
20 21 >> [Всего задач: 101]