ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны два бикфордова шнура, каждый из которых горит ровно минуту, если его поджечь с одного конца (но сгорать может неравномерно). Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета на расстоянии 2004 м. Можно ли в тетрадном листке вырезать такую дырку, через которую пролез бы человек?
Докажите, что прямая, проходящая через середины оснований трапеции, разбивает её на две равновеликие части.
В треугольнике ABC сторона AC наименьшая. На сторонах AB и CB взяты точки K и L соответственно, причём KA = AC = CL. Пусть M – точка пересечения AL и KC, а I – центр вписанной в треугольник ABC окружности. Докажите, что прямая MI перпендикулярна прямой AC. На стороне AC остроугольного треугольника ABC выбраны точки
M и K так, что ∠ABM = ∠CBK. Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q. |
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 241]
Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q.
Найдите сумму квадратов расстояний от вершин правильного n-угольника, вписанного в окружность радиуса R, до произвольной прямой, проходящей через центр многоугольника.
Докажите, что сумма квадратов длин проекций сторон правильного n-угольника на любую прямую равна ½ na², где a – сторона n-угольника.
Правильный n-угольник A1...An вписан в окружность радиуса R; X – точка этой окружности. Докажите, что
Среди всех треугольников, вписанных в данную окружность, найдите тот,
у которого максимальна сумма квадратов длин сторон.
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 241]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке