Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине, O – точка серединного перпендикуляра к отрезку BC, равноудалённая от точек B1 и C1. Докажите, что  ∠B1OC1 = 180° – φ.

Вниз   Решение


В треугольнике ABC, таком, что  AB = BC = 4  и   AC = 2,  проведены биссектриса AA1, медиана BB1 и высота CC1.
Найдите площадь треугольника, образованного пересечением прямых:   а) AC, AA1 и CC1;   б) AA1, BB1 и CC1.

ВверхВниз   Решение


В треугольнике ABC даны длины сторон AB = 8, BC = 6 и биссектриса BD = 6. Найдите длину медианы AE.

ВверхВниз   Решение


В трапеции CDEF ( DE$ \Vert$CF) известно, что CF = 2 . DE. На сторонах CD и EF взяты соответственно точки K и L, CK : KD = 3 : 2, EL : LF = 5 : 3. В каком отношении прямая KL делит площадь трапеции?.

ВверхВниз   Решение


Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу.

ВверхВниз   Решение


Вневписанная окружность треугольника ABC касается его стороны BC в точке K, а продолжения стороны AB – в точке L. Другая вневписанная окружность касается продолжений сторон AB и BC в точках M и N соответственно. Прямые KL и MN пересекаются в точке X. Докажите, что CX – биссектриса угла ACN.

ВверхВниз   Решение


Сторона основания ABC правильной треугольной пирамиды ABCD равна 6, двугранный угол между боковыми гранями равен arccos 7/32. Точки A1 и B1 – середины рёбер AD и BD соответственно, BC1 – высота в треугольнике DBC. Найдите:
  1) угол между прямыми AB и B1C1;
  2) площадь треугольника A1B1C1;
  3) расстояние от точки B до плоскости A1B1C1;
  4) радиус вписанного в пирамиду A1B1C1D шара.

ВверхВниз   Решение


На трёх отрезках OA, OB и OC одинаковой длины (точка B лежит внутри угла AOC) как на диаметрах построены окружности. Докажите, что площадь криволинейного треугольника, ограниченного дугами этих окружностей и не содержащего точку O, равна половине площади (обычного) треугольника ABC.

ВверхВниз   Решение


В правильной четырёхугольной пирамиде SABCD высота равна диагонали основания ABCD . Через вершину A параллельно прямой BD проведена плоскость, касающаяся вписанного в пирамиду шара. Найдите отношение площади сечения к площади основания пирамиды.

ВверхВниз   Решение


Для определения эффективной температуры звёзд используют закон Стефана — Больцмана, согласно которому мощность излучения нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: P=σ ST4 , где σ = 5,7· 10-8  — числовой коэффициент, площадь измеряется в квадратных метрах, температура — в градусах Кельвина, а мощность — в ваттах. Известно, что некоторая звезда имеет площадь S = · 1015 м2 , а излучаемая ею мощность P не менее 46,17· 1024 , определите наименьшую возможную температуру этой звезды.

ВверхВниз   Решение


Клетчатый прямоугольник разбит на двухклеточные доминошки. В каждой доминошке провели одну из двух диагоналей. Оказалось, что никакие диагонали не имеют общих концов. Докажите, что ровно два из четырёх углов прямоугольника являются концами диагоналей.

Вверх   Решение

Задачи

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 490]      



Задача 110130

Темы:   [ НОД и НОК. Взаимная простота ]
[ Десятичная система счисления ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4
Классы: 8,9,10

Автор: Храмцов Д.

Докажите, что из произвольного множества трёхзначных чисел, включающего не менее четырёх чисел, взаимно простых в совокупности, можно выбрать четыре числа, также взаимно простых в совокупности.

Прислать комментарий     Решение

Задача 110137

Темы:   [ НОД и НОК. Взаимная простота ]
[ Десятичная система счисления ]
[ Принцип крайнего (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4
Классы: 8,9,10

Автор: Храмцов Д.

Докажите, что из любых шести четырёхзначных чисел, взаимно простых в совокупности, всегда можно выбрать пять чисел, также взаимно простых в совокупности.

Прислать комментарий     Решение

Задача 111691

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
[ Принцип крайнего (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 8,9,10,11

На столе лежат  N > 2  кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого N выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.

Прислать комментарий     Решение

Задача 115986

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Линейные неравенства и системы неравенств ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Доказательство от противного ]
[ Перебор случаев ]
Сложность: 4
Классы: 9,10,11

Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений.

  а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.
  б) Докажите, что таких троек найдется не менее шести (тройки, отличающиеся только порядком чисел, считаем одинаковыми).

Прислать комментарий     Решение

Задача 116046

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9

Клетчатый прямоугольник разбит на двухклеточные доминошки. В каждой доминошке провели одну из двух диагоналей. Оказалось, что никакие диагонали не имеют общих концов. Докажите, что ровно два из четырёх углов прямоугольника являются концами диагоналей.

Прислать комментарий     Решение

Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 490]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .