Processing math: 20%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Петя и Вася играют в игру. Для каждых пяти различных переменных из набора x1,...,x10 имеется единственная карточка, на которой записано их произведение. Петя и Вася по очереди берут по карточке, начинает Петя. По правилам игры, когда все карточки разобраны, Вася присваивает переменным значения как хочет, но так, что  0 \leqslant x_{1} \leqslant ... \leqslant x_{10}.  Может ли Вася гарантированно добиться того, чтобы сумма произведений на его карточках была больше, чем у Пети?

Вниз   Решение


Координаты вершин треугольника рациональны. Докажите, что координаты центра его описанной окружности также рациональны.

ВверхВниз   Решение


Автор: Фольклор

Четыре одинаковых кубика расположили на столе так, как показано на рисунке. Одна из граней каждого кубика покрашена в чёрный цвет. За один шаг разрешается повернуть одинаковым образом оба кубика из одного ряда (вертикального или горизонтального). Докажите, что, независимо от начального расположения чёрных граней, за несколько таких шагов можно расположить кубики чёрными гранями вверх.

ВверхВниз   Решение


На плоскости лежат три шайбы A, B и C. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов?

ВверхВниз   Решение


Вдоль улицы стоят шесть деревьев, и на каждом из них сидит по вороне. Раз в час две из них взлетают, и каждая садится на одно из соседних деревьев. Может ли получиться так, что все вороны соберутся на одном дереве?

ВверхВниз   Решение


Пусть  $ \alpha$ = $ \pi$/7. Докажите, что  $ {\frac{1}{\sin\alpha }}$ = $ {\frac{1}{\sin 2\alpha }}$ + $ {\frac{1}{\sin
3\alpha }}$.

ВверхВниз   Решение


В соревнованиях участвуют 10 фигуристов. Соревнования судят трое судей следующим способом: каждый судья по-своему распределяет между фигуристами места (с первого по десятое), после чего победителем считается фигурист с наименьшей суммой мест. Какое наибольшее значение может принимать эта сумма у победителя (победитель единственный)?

ВверхВниз   Решение


В неравнобедренном треугольнике ABC биссектрисы углов A и B обратно пропорциональны противолежащим сторонам. Найдите угол C.

ВверхВниз   Решение


Автор: Шноль Д.Э.

Вася положил некую сумму в рублях в банк под 20% годовых. Петя взял другую сумму в рублях, перевел её в доллары и положил в банк под 10% годовых. За год цена одного доллара в рублях увеличилась на 9,5%. Когда через год Петя перевел свой вклад в рубли, то оказалось, что за год Вася и Петя получили одинаковую прибыль. У кого первоначально была сумма больше – у Васи или у Пети?

ВверхВниз   Решение


Автор: Фольклор

Бильярд имеет форму прямоугольного треугольника, один из острых углов которого равен 30°. Из этого угла по медиане противоположной стороны выпущен шар (материальная точка). Доказать, что после восьми отражений (угол падения равен углу отражения) он попадёт в лузу, находящуюся в вершине угла 60°.

ВверхВниз   Решение


На стороне AB треугольника ABC выбрана точка M. В треугольнике ACM точка I1 – центр вписанной, J1 – центр вневписанной окружности, касающейся стороны CM. В треугольнике BCM точка I2 – центр вписанной, J2 центр вневписанной окружности, касающейся стороны CM. Докажите, что прямая, проходящая через середины отрезков I1I2 и J1J2 перпендикулярна AB.

ВверхВниз   Решение


Автор: Кноп К.А.

Даны треугольник ABC (AB > AC) и описанная около него окружность. Постройте циркулем и линейкой середину дуги BC (не содержащей вершину A), проведя не более двух линий.

ВверхВниз   Решение


В треугольнике ABC:  ∠C = 60°,  ∠A = 45°.  Пусть M – середина BC, H – ортоцентр треугольника ABC.
Докажите, что прямая MH проходит через середину дуги AB описанной окружности треугольника ABC.

ВверхВниз   Решение


Рассмотрим на клетчатой плоскости такие ломаные с началом в точке (0, 0) и вершинами в целых точках, что каждое очередное звено идёт по сторонам клеток либо вверх, либо вправо. Каждой такой ломаной соответствует червяк – фигура, состоящая из клеток плоскости, имеющих хотя бы одну общую точку с этой ломаной. Докажите, что червяков, которые можно разбить на двуклеточные доминошки ровно  n > 2  различными способами, столько же, сколько натуральных чисел, меньших n и взаимно простых с n. (Червяки разные, если состоят из разных наборов клеток.)

ВверхВниз   Решение


Представим себе большой куб, склеенный из 27 меньших кубиков. Термит садится на центр грани одного из наружных кубиков и начинает прогрызать ход. Побывав в кубике, термит к нему уже не возвращается. Движется он при этом всегда параллельно какому-нибудь ребру большого куба. Может ли термит прогрызть все 26 внешних кубиков и закончить свой ход в центральном кубике? Если возможно, покажите, каким должен быть путь термита.

ВверхВниз   Решение


Автор: Фольклор

Постройте треугольник по стороне, радиусу вписанной окружности и радиусу вневписанной окружности, касающейся этой стороны. (Исследование проводить не требуется.)

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 92]      



Задача 54600

Темы:   [ Построение треугольников по различным элементам ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по углу, противолежащей стороне и разности двух других сторон.

Прислать комментарий     Решение


Задача 54936

Темы:   [ Построение треугольников по различным элементам ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки по данным отрезкам a, h и m постройте треугольник ABC со стороной BC = a, высотой BH = h и медианой а) BM = m; б) AM = m.

Прислать комментарий     Решение


Задача 116081

Темы:   [ Построение треугольников по различным элементам ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Постройте треугольник по стороне, радиусу вписанной окружности и радиусу вневписанной окружности, касающейся этой стороны. (Исследование проводить не требуется.)

Прислать комментарий     Решение

Задача 53573

Темы:   [ Построение треугольников по различным элементам ]
[ Метод ГМТ ]
Сложность: 4-
Классы: 8,9

Постройте треугольник по медиане и двум углам.

Прислать комментарий     Решение


Задача 54538

Темы:   [ Построение треугольников по различным элементам ]
[ Метод ГМТ ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по стороне, противолежащему углу и радиусу вписанной окружности.

Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 92]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .