ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Опустить из данной точки A вне прямой l перпендикуляр на эту прямую, проведя не более трёх линий? (Третьей линией должен быть перпендикуляр.) Можно ли все прямые на плоскости разбить на пары перпендикулярных прямых? На стороне AC треугольника ABC отметили точку E. Известно, что периметр треугольника ABC равен 25 см, периметр треугольника ABE равен 15 см, а периметр треугольника BCE – 17 см. Найдите длину отрезка BE. Даны три некомпланарных вектора. Существует ли четвёртый ненулевой вектор, перпендикулярный трём данным? Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете. Четырехугольник $ABCD$ – вписанный. Окружность, проходящая через точки $A$ и $B$, пересекает диагонали $AC$ и $BD$ в точках $E$ и $F$ соответственно. Пусть прямые $AF$ и $BC$ пересекаются в точке $P$, а прямые $BE$ и $AD$ – в точке $Q$. Докажите, что $PQ$ параллельна $CD$. Найдите объём правильной четырёхугольной пирамиды со стороной основания a боковым ребром b . Расстояние между центрами окружностей больше суммы их радиусов. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 125]
На плоскости даны окружность S и точка P. Прямая,
проведенная через точку P, пересекает окружность в точках A
и B. Докажите, что произведение
PA . PB не зависит от
выбора прямой.
Докажите, что для точки P, лежащей вне окружности S,
ее степень относительно S равна квадрату длины касательной,
проведенной из этой точки.
Докажите, что степень точки P относительно
окружности S равна d2 - R2, где R — радиус S, d — расстояние от
точки P до центра S.
Окружность задана уравнением f (x, y) = 0, где
f (x, y) = x2 + y2 + ax + by + c.
Докажите, что степень точки (x0, y0) относительно этой окружности равна
f (x0, y0).
Расстояние между центрами окружностей больше суммы их радиусов.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 125]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке