Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Определите, на какую наибольшую натуральную степень числа 2007 делится 2007!

Вниз   Решение


Хорды AC и BD окружности с центром O пересекаются в точке K. Пусть M и N – центры описанных окружностей треугольников AKB и CKD соответственно. Докажите, что  OM = KN.

ВверхВниз   Решение


Около треугольника ABC описана окружность с центром O. Вторая окружность, проходящая через точки A, B, O, касается прямой AC в точке A.
Докажите, что  AB = AC.

ВверхВниз   Решение


Вписанная в треугольник ABC окружность касается его сторон AB , BC и AC соответственно в точках K , M и N . Известно, что AC=1 , а углы MKN и ABC равны соответственно 45o и 30o . Найдите радиус окружности.

ВверхВниз   Решение


Вписанная в треугольник ABC окружность радиуса 1 касается его сторон AB , BC и AC соответственно в точках K , M и N . Известно, что MKN = ABC = 45o . Найдите стороны треугольника ABC .

ВверхВниз   Решение


Можно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом?

ВверхВниз   Решение


Автор: Фольклор

В прямоугольнике АВСD точка Р – середина стороны АВ, а точка Q – основание перпендикуляра, опушенного из вершины С на PD.
Докажите, что  BQ = BC.

ВверхВниз   Решение


Вычислите суммы:
  а)  

  б)  

ВверхВниз   Решение


На доске записано число 61. Каждую минуту число стирают с доски и записывают на это место произведение его цифр, увеличенное на 13. После первой минуты на доске записано 19  (6·1 + 13 = 19).  Какое число можно будет прочитать на доске через час?

ВверхВниз   Решение


Дан треугольник ABC . На его сторонах AB и BC построены внешним образом квадраты ABMN и BCPQ . Докажите, что центры этих квадратов и середины отрезков MQ и AC образуют квадрат.

ВверхВниз   Решение


В треугольнике ABC известно, что AB = BC, $ \angle$BAC = 45o. Прямая MN пересекает сторону AC в точке M, а сторону BC — в точке N, AM = 2 . MC, $ \angle$NMC = 60o. Найдите отношение площади треугольника MNC к площади четырёхугольника ABNM.

ВверхВниз   Решение


На складах двух магазинов хранится пшено: на первом складе на 16 тонн больше, чем на втором. Каждую ночь ровно в полночь владелец каждого магазина ворует у своего конкурента четверть имеющегося на его складе пшена и перетаскивает на свой склад. Через 10 ночей воришек поймали. На каком складе в момент их поимки было больше пшена и на сколько?

ВверхВниз   Решение


Даны две точки и окружность. С помощью циркуля и линейки проведите через данные точки две секущие, хорды которых внутри данной окружности были бы равны и пересекались бы под данным углом α .

ВверхВниз   Решение


С помощью циркуля и линейки постройте равносторонний треугольник, вершины которого лежат соответственно на трёх данных концентрических окружностях.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 144]      



Задача 116114

Темы:   [ Поворот помогает решить задачу ]
[ Треугольник (построения) ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте равносторонний треугольник, вершины которого лежат соответственно на трёх данных концентрических окружностях.
Прислать комментарий     Решение


Задача 116115

Темы:   [ Поворот помогает решить задачу ]
[ Треугольник (построения) ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки впишите в данный параллелограмм прямоугольник с заданным углом между диагоналями.
Прислать комментарий     Решение


Задача 116117

Темы:   [ Поворот помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте на сторонах BC и CD параллелограмма ABCD точки M и N так, чтобы угол при вершине A равнобедренного треугольника MAN был равен α .
Прислать комментарий     Решение


Задача 116118

Темы:   [ Поворот помогает решить задачу ]
[ Треугольник (построения) ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте равносторонний треугольник, одна вершина которого лежала бы на данной окружности, другая — на данной прямой, а третья — в данной точке.
Прислать комментарий     Решение


Задача 116121

Темы:   [ Поворот помогает решить задачу ]
[ Поворот на $90^\circ$ ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки впишите квадрат в данный параллелограмм.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 144]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .