Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В стране некоторые пары городов соединены дорогами, которые не пересекаются вне городов. В каждом городе установлена табличка, на которой указана минимальная длина маршрута, выходящего из этого города и проходящего по всем остальным городам страны (маршрут может проходить по некоторым городам больше одного раза и не обязан возвращаться в исходный город). Докажите, что любые два числа на табличках отличаются не более чем в полтора раза.

Вниз   Решение


Сфера вписана в четырёхугольную пирамиду SABCD , основанием которой является трапеция ABCD , а также вписана в правильный тетраэдр, одна из граней которого совпадает с боковой гранью пирамиды SABCD . Найдите радиус сферы, если объём пирамиды SABCD равен 64.

ВверхВниз   Решение


Даны два выпуклых многоугольника. Известно, что расстояние между любыми двумя вершинами первого не больше 1 , расстояние между любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше, чем 1/ . Докажите, что многоугольники не имеют общих внутренних точек.

ВверхВниз   Решение


Окружности с центрами O1 и O2 имеют общую хорду AB , AO1B = 120o . Отношение длины второй окружности к длине первой равно . Найдите угол AO2B .

ВверхВниз   Решение


Дан шестиугольник ABCDEF, в котором AB = BC, CD = DE, EF = FA, а углы A и C — прямые. Докажите, что прямые FD и BE перпендикулярны.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 125]      



Задача 56730

Тема:   [ Радикальная ось ]
Сложность: 6
Классы: 9

Даны четыре окружности  S1, S2, S3 и S4, причем окружности Si и Si + 1 касаются внешним образом для i = 1, 2, 3, 4 (S5 = S1). Докажите, что радикальная ось окружностей S1 и S3 проходит через точку пересечения общих внешних касательных к S2 и S4.
Прислать комментарий     Решение


Задача 56731

Тема:   [ Радикальная ось ]
Сложность: 6
Классы: 9

а) Окружности S1 и S2 пересекаются в точках A и B. Степень точки P окружности S1 относительно окружности S2 равна p, расстояние от точки P до прямой AB равно h, а расстояние между центрами окружностей равно d. Докажите, что | p| = 2dh.
б) Степени точек A и B относительно описанных окружностей треугольников BCD и ACD равны pa и pb. Докажите, что  | pa| SBCD = | pb| SACD.
Прислать комментарий     Решение


Задача 52779

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
Сложность: 3
Классы: 8,9

Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним.

Прислать комментарий     Решение


Задача 116187

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Радикальная ось ]
[ Вспомогательная окружность ]
[ Шестиугольники ]
Сложность: 3+
Классы: 8,9

Дан шестиугольник ABCDEF, в котором AB = BC, CD = DE, EF = FA, а углы A и C — прямые. Докажите, что прямые FD и BE перпендикулярны.

Прислать комментарий     Решение

Задача 66898

Темы:   [ Вписанные и описанные окружности ]
[ Радикальная ось ]
[ Симметрия помогает решить задачу ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4
Классы: 9,10,11

Пусть $O$ – центр описанной окружности остроугольного треугольника $ABC$, точка $M$ – середина стороны $AC$. Прямая $BO$ пересекает высоты $AA_1$ и $CC_1$ в точках $H_a$ и $H_c$ соответственно. Описанные окружности треугольников $BH_aA$ и $BH_cC$ вторично пересекаются в точке $K$. Докажите, что $K$ лежит на прямой $BM$.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .