|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Вписанная окружность прямоугольного треугольника ABC касается гипотенузы AB в точке P, CH – высота треугольника ABC. Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов. В равнобедренном треугольнике ABC длина основания AC равна 2
Дан треугольник ABC. Tочки A1, B1 и C1 симметричны его вершинам относительно противоположных сторон. C2 – точка пересечения прямых AB1 и BA1, точки A2 и B2 определяются аналогично. Докажите, что прямые A1A2, B1B2 и C1C2 параллельны. В каждой комнате особняка стояли букеты цветов. Всего было 30 букетов роз, 20 – гвоздик и 10 – хризантем, причём, в каждой комнате стоял хотя бы один букет. При этом ровно в двух комнатах стояли одновременно и хризантемы, и гвоздики, ровно в трёх комнатах – и хризантемы, и розы, ровно в четырёх комнатах – и гвоздики, и розы. Могло ли в особняке быть 55 комнат? В окружность вписан треугольник ABC. Постройте такую точку P, что точки пересечения прямых AP, BP и CP с данной окружностью являются вершинами равностороннего треугольника. |
Страница: << 1 2 3 [Всего задач: 15]
В окружность вписан треугольник ABC. Постройте такую точку P, что точки пересечения прямых AP, BP и CP с данной окружностью являются вершинами равностороннего треугольника.
Дан треугольник ABC. Tочки A1, B1 и C1 симметричны его вершинам относительно противоположных сторон. C2 – точка пересечения прямых AB1 и BA1, точки A2 и B2 определяются аналогично. Докажите, что прямые A1A2, B1B2 и C1C2 параллельны.
Касательные, проведённые к описанной окружности остроугольного треугольника ABC в точках A и C, пересекаются в точке Z. AA1, CC1 – высоты. Прямая A1C1 пересекает прямые ZA, ZC в точках X и Y соответственно. Докажите, что описанные окружности треугольников ABC и XYZ касаются.
Сфера, вписанная в тетраэдр, касается одной из его граней в точке пересечения биссектрис, другой – в точке пересечения высот, третьей – в точке пересечения медиан. Докажите, что тетраэдр правильный.
Страница: << 1 2 3 [Всего задач: 15] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|