Страница:
<< 180 181 182 183
184 185 186 >> [Всего задач: 1221]
|
|
Сложность: 3+ Классы: 9,10,11
|
Два пирата делили добычу, состоящую из пяти золотых слитков, масса одного из которых 1 кг, а другого – 2 кг. Какую массу могли иметь три других слитка, если известно, что какие бы два слитка ни выбрал себе первый пират, второй пират сможет так разделить оставшиеся слитки, чтобы каждому из них досталось золота поровну?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Длина взрослого червяка 1 метр. Если червяк взрослый, его можно разрезать на две части в любом отношении длин. При этом получаются два новых червяка, которые сразу начинают расти со скоростью 1 метр в час каждый. Когда длина червяка достигает метра, он становится взрослым и прекращает расти. Можно ли из одного взрослого червяка получить 10 взрослых червяков быстрее чем за час?
Среди участников олимпиады каждый знаком не менее чем с тремя другими. Докажите, что можно выбрать группу из чётного числа участников (больше двух человек) и посадить их за круглый стол так, чтобы каждый был знаком с обоими соседями.
|
|
Сложность: 3+ Классы: 8,9,10
|
На доске 8×8 стоят 8 не бьющих друг друга ладей. Все клетки доски распределяются во владения этих ладей по следующему правилу. Клетка, на которой стоит ладья, отдаётся этой ладье. Клетку, которую бьют две ладьи, получает та из ладей, которая ближе к этой клетке; если же эти две ладьи равноудалены от клетки, то каждая из них получает по полклетки. Докажите, что площади владений всех ладей одинаковы.
В бригаде 7 человек и их суммарный возраст - 332
года. Докажите, что из них можно выбрать трех человек, сумма
возрастов которых не меньше 142 лет.
Страница:
<< 180 181 182 183
184 185 186 >> [Всего задач: 1221]