ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В этой задаче вы должны построить предложение русского языка, которое говорит о себе правду, только правду, и ничего кроме правды. Это предложение должно содержать в себе информацию о количестве букв, слов, пробелов, запятых, точек, кавычек в предложении и о количестве вхождений в предложение всех его слов. Оно должно быть орфографически и пунктуационно правильным, а также корректным с точки зрения русского языка. Все числительные должны быть записаны словами. Моделью такого предложения (не удовлетворяющей лишь свойству
правдивости) может служить такой текст:
Когда Кай справился с этим заданием, Королева дала ему другую ледяную пластинку (см. рисунок). Как разрезать ее на две равные части?
Треугольник BHC, где H – ортоцентр треугольника ABC, достроен до параллелограмма BHCD. Докажите, что ∠BAD = ∠CAH. |
Страница: << 1 2 3 4 >> [Всего задач: 17]
Окружности S1 и S2 пересекаются в точках A и B,
причем касательные к S1 в этих точках являются радиусами S2. На
внутренней дуге S1 взята точка C и соединена с точками A и B
прямыми. Докажите, что вторые точки пересечения этих прямых с S2
являются концами одного диаметра.
Из центра O окружности опущен перпендикуляр OA
на прямую l. На прямой l взяты точки B и C так, что AB = AC.
Через точки B и C проведены две секущие, первая из которых
пересекает окружность в точках P и Q, а вторая — в точках M
и N. Прямые PM и QN пересекают прямую l в точках R и S.
Докажите, что AR = AS.
Пусть H - точка пересечения высот в треугольнике ABC. Докажите, что если провести прямые, симметричные прямым AH, BH, CH относительно биссектрис углов A, B, C, то эти прямые пересекутся в центре O описанной окружности треугольника ABC.
В окружность вписан треугольник ABC. Точка P пробегает дугу ACB. Найдите геометрическое место центров вписанных окружностей всевозможных треугольников ABP.
Треугольник BHC, где H – ортоцентр треугольника ABC, достроен до параллелограмма BHCD. Докажите, что ∠BAD = ∠CAH.
Страница: << 1 2 3 4 >> [Всего задач: 17]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке