ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Внутри прямоугольного треугольника АВС выбрана произвольная точка Р, из которой опущены перпендикуляры PK и РМ на катеты АС и ВС соответственно. Прямые АР и ВР пересекают катеты в точках A' и B' соответственно. Известно, что  SAPB' : SKPB' = m.  Найдите  SMPA' : SBPA'.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 112]      



Задача 116622

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Внутри прямоугольного треугольника АВС выбрана произвольная точка Р, из которой опущены перпендикуляры PK и РМ на катеты АС и ВС соответственно. Прямые АР и ВР пересекают катеты в точках A' и B' соответственно. Известно, что  SAPB' : SKPB' = m.  Найдите  SMPA' : SBPA'.

Прислать комментарий     Решение

Задача 116857

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Точка K – середина гипотенузы АВ прямоугольного треугольника АВС. На катетах АС и ВС выбраны точки М и N соответственно так, что угол МKN – прямой. Докажите, что из отрезков АМ, ВN и MN можно составить прямоугольный треугольник.

Прислать комментарий     Решение

Задача 116907

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10

ABC – равнобедренный прямоугольный треугольник. На продолжении гипотенузы AB за точку A взята точка D так, что  AB = 2AD. Точки M и N на стороне AC таковы, что  AM = NC.  На продолжении стороны CB за точку B взята такая точка K, что  CN = BK.  Найдите угол между прямыми NK и DM.

Прислать комментарий     Решение

Задача 66674

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Три окружности пересекаются в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Автор: Mahdi Etesami Fard

Пусть $M$ – середина гипотенузы $AB$ прямоугольного треугольника $ABC$. Окружность, проходящая через $C$ и $M$, пересекает прямые $BC$ и $AC$ в точках $P$ и $Q$ соответственно. Пусть $c_1, c_2$ – окружности с центрами $P$, $Q$ и радиусами $BP$, $AQ$ соответственно. Докажите, что $c_1$, $c_2$ и описанная окружность треугольника $ABC$ проходят через одну точку.
Прислать комментарий     Решение


Задача 56498

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Поворот помогает решить задачу ]
[ Средняя линия трапеции ]
Сложность: 4-
Классы: 8,9

На катетах CA и CB равнобедренного прямоугольного треугольника ABC выбраны точки D и E так, что  CD = CE.  Продолжения перпендикуляров, опущенных из точек D и C на прямую AE, пересекают гипотенузу AB в точках K и L. Докажите, что  KL = LB.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .