|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Решите уравнения На вершине лесенки, содержащей N ступенек, находится мячик, который начинает прыгать по ним вниз, к основанию. Мячик может прыгнуть на следующую ступеньку, на ступеньку через одну или через 2. (То есть, если мячик лежит на 8-ой ступеньке, то он может переместиться на 5-ую, 6-ую или 7-ую.) Определить число всевозможных "маршрутов" мячика с вершины на землю. Формат входных данных Одно число 0 < N < 31. Формат выходных данных Одно число количество маршрутов. В основании прямой призмы лежит квадрат со стороной 5 . Боковые ребра равны Рациональные числа x, y и z таковы, что все числа x + y² + z², x² + y + z² и x² + y² + z целые. Докажите, что число 2x целое. |
Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 490]
По кругу расставлено не менее четырёх неотрицательных чисел, в сумме равных
единице.
В клетках таблицы 2000×2000 записаны числа 1 и –1. Известно, что сумма всех чисел в таблице неотрицательна. Докажите, что найдутся 1000 строк и 1000 столбцов таблицы, для которых сумма чисел, записанных в клетках, находящихся на их пересечении, не меньше 1000.
В стране несколько городов, некоторые пары городов соединены дорогами. При этом из каждого города выходит хотя бы три дороги.
На клетчатой бумаге нарисован прямоугольник, стороны которого образуют углы в 45° с линиями сетки, а вершины не лежат на линиях сетки.
a и b – натуральные числа. Покажите, что если 4ab – 1 делит (4a² – 1)², то a = b.
Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 490] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|