ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть AH – высота остроугольного треугольника ABC, а точки K и L – проекции H на стороны AB и AC. Описанная окружность Ω треугольника ABC пересекает прямую KL в точках P и Q, а прямую AH – в точках A и T. Докажите, что точка H является центром вписанной окружности треугольника PQT.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 107]      



Задача 66309

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Касающиеся окружности ]
[ Поворотная гомотетия (прочее) ]
[ Инверсия помогает решить задачу ]
[ Окружность Аполлония ]
Сложность: 4+
Классы: 9,10

Автор: Mahdi Etesami Fard

Точка D лежит на основании BC равнобедренного треугольника ABC, а точки M и K – на его боковых сторонах AB и AC соответственно, причём AMDK – параллелограмм. Прямые MK и BC пересекаются в точке L. Перпендикуляр к BC, восставленный из точки D, пересекает прямые AB и AC в точках X и Y соответственно. Докажите, что окружность с центром L, проходящая через D, касается описанной окружности треугольника AXY.

Прислать комментарий     Решение

Задача 66320

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
[ Пересекающиеся окружности ]
[ Инверсия помогает решить задачу ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 10,11

Четырёхугольник ABCD описан около окружности с центром I и вписан в окружность Ω. Прямые AB и CD пересекаются в точке P, а прямые BC и AD пересекаются в точке Q. Докажите, что описанная окружность ω треугольника PIQ перпендикулярна Ω.

Прислать комментарий     Решение

Задача 116910

Темы:   [ Вписанные и описанные окружности ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Отношения линейных элементов подобных треугольников ]
[ Инверсия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10

Пусть AH – высота остроугольного треугольника ABC, а точки K и L – проекции H на стороны AB и AC. Описанная окружность Ω треугольника ABC пересекает прямую KL в точках P и Q, а прямую AH – в точках A и T. Докажите, что точка H является центром вписанной окружности треугольника PQT.

Прислать комментарий     Решение

Задача 66976

Темы:   [ Описанные четырехугольники ]
[ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
[ Прямая Гаусса ]
[ Радикальная ось ]
Сложность: 4+
Классы: 9,10,11

Автор: Dadgarnia A.

Четырехугольник $ABCD$ описан около окружности $\omega$ с центром $I$. Прямые $AC$ и $BD$ пересекаются в точке $P$, $AB$ и $CD$ – в точке $E$, $AD$ и $BC$ – в точке $F$. Точка $K$ на описанной окружности треугольника $EIF$ такова, что $\angle IKP=90^{\circ}$. Луч $PK$ пересекает $\omega$ в точке $Q$. Докажите, что описанная окружность треугольника $EQF$ касается $\omega$.
Прислать комментарий     Решение


Задача 64741

Темы:   [ Правильные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
[ Наименьший или наибольший угол ]
[ Инверсия помогает решить задачу ]
Сложность: 5-
Классы: 9,10

На доске нарисован правильный многоугольник. Володя хочет отметить k точек на его периметре так, чтобы не существовало другого правильного многоугольника (не обязательно с тем же числом сторон), также содержащего отмеченные точки на своем периметре.
Найдите наименьшее k, достаточное для любого исходного многоугольника.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .