Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

По стороне правильного треугольника катится окружность радиуса, равного его высоте. Докажите, что угловая величина дуги, высекаемой на окружности сторонами треугольника, всегда равна 600.

Вниз   Решение


Решить в натуральных числах уравнение:  

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем  AC1 = AB1, BA1 = BC1 и CA1 = CB1. Докажите, что A1, B1 и C1 — точки касания вписанной окружности со сторонами.

ВверхВниз   Решение


Автор: Шевяков В.

Имеются три литровых банки и мерка объемом 100 мл. Первая банка пуста, во второй – 700 мл сладкого чая, в третьей – 800 мл сладкого чая. При этом во второй банке растворено 50 г сахара, а в третьей – 60 г сахара. Разрешается набрать из любой банки полную мерку чая и перелить весь этот чай в любую другую банку. Можно ли несколькими такими переливаниями добиться, чтобы первая банка была пуста, а количество сахара во второй банке равнялось количеству сахара в третьей банке?

ВверхВниз   Решение


Докажите, что  2(x² + y²) ≥ (x + y)²  при любых x и y.

ВверхВниз   Решение


Докажите, что если произведение двух положительных чисел больше их суммы, то сумма больше 4.

ВверхВниз   Решение


Незнайка выписал семь двузначных чисел в порядке возрастания. Затем одинаковые цифры заменил одинаковыми буквами, а разные – разными. Получилось вот что: ХА, АЙ, АХ, ОЙ, ЭМ, ЭЙ, МУ. Докажите, что Незнайка что-то перепутал.

ВверхВниз   Решение


Авторы: Pantaloni V., Southall E.

Король Артур хочет заказать кузнецу новый рыцарский щит по своему эскизу. Король взял циркуль и нарисовал три дуги радиусом $1$ ярд так, как показано на рисунке. Чему равняется площадь щита? Ответ округлите до сотых. Напомним, что площадь круга радиуса $r$ равна $\pi r^2$, $\pi\approx 3,14$.

ВверхВниз   Решение


  а) Докажите, что в таблице

где каждое число равно сумме трёх стоящих над ним чисел, в каждой строке (начиная с третьей) есть чётное число.
  б) В каждой ли строке (кроме первых двух) встречается число, кратное 3?

ВверхВниз   Решение


Один из острых углов прямоугольного треугольника равен 25o. Под каким углом виден каждый его катет из центра описанной окружности?

ВверхВниз   Решение


Натуральные числа от 1 до 100 раскрашены в три цвета: 50 чисел – в красный, 25 чисел – в жёлтый и 25 – в зелёный. Известно, что все красные и жёлтые числа можно разбить на 25 троек так, чтобы в каждой тройке было два красных числа и одно жёлтое, которое больше одного красного и меньше другого. Аналогичное утверждение верно для красных и зелёных чисел. Обязательно ли все 100 чисел можно разбить на 25 четвёрок, в каждой из которых два красных числа, одно жёлтое и одно зелёное, при этом жёлтое и зелёное числа лежат между красными?

ВверхВниз   Решение


Вычислите производящие функции следующих последовательностей:
а)     б)  

ВверхВниз   Решение


Однажды осенью Рассеянный Учёный глянул на свои старинные настенные часы и увидел, что на циферблате уснули три мухи. Первая спала в точности на отметке 12 часов, а две другие так же аккуратно расположились на отметках 2 часа и 5 часов. Учёный произвёл измерения и определил, что часовая стрелка мухам не грозит, а вот минутная сметёт их всех по очереди. Найдите вероятность того, что ровно через 40 минут после того, как Учёный заметил мух, ровно две мухи из трёх были сметены минутной стрелкой.

ВверхВниз   Решение


Постройте равнобедренный треугольник по основанию и радиусу описанной окружности.

ВверхВниз   Решение


На танцплощадке собрались N юношей и N девушек. Сколькими способами они могут разбиться на пары для участия в очередном танце?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1008]      



Задача 30320

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7

Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

Прислать комментарий     Решение

Задача 30321

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7,8

Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы?

Прислать комментарий     Решение

Задача 30322

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 6,7

Сколькими способами можно заполнить одну карточку в лотерее "Спортпрогноз"? (В этой лотерее нужно предсказать итог тринадцати спортивных матчей. Итог каждого матча – победа одной из команд либо ничья; счёт роли не играет).

Прислать комментарий     Решение

Задача 30324

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7

В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Прислать комментарий     Решение

Задача 30346

Тема:   [ Перестановки и подстановки (прочее) ]
Сложность: 2
Классы: 6,7,8

На танцплощадке собрались N юношей и N девушек. Сколькими способами они могут разбиться на пары для участия в очередном танце?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1008]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .