Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 22 задачи
Версия для печати
Убрать все задачи

a, b, c, d – положительные числа. Докажите, что  

Вниз   Решение


Точка O – центр вписанной окружности треугольника ABC. На сторонах AC и BC выбраны точки M и K соответственно так, что  BK·AB = BO²  и
AM·AB = AO².  Докажите, что точки M, O и K лежат на одной прямой.

ВверхВниз   Решение


Семнадцать девушек водят хоровод. Сколькими различными способами они могут встать в круг?

ВверхВниз   Решение


Сторона ромба равна 8 см, острый угол равен 30o. Найдите радиус вписанного круга.

ВверхВниз   Решение


Джон, приехав из Диснейленда, рассказывал, что там на заколдованном озере имеются семь островов, с каждого из которых ведет один, три или пять мостов. Верно ли, что хотя бы один из этих мостов обязательно выходит на берег озера?

ВверхВниз   Решение


В остроугольном треугольнике $ABC$ точка $O$ – центр описанной окружности. Точка $B_1$ симметрична точке $B$ относительно стороны $AC$. Прямые $AO$ и $B_1C$ пересекаются в точке $K$. Докажите, что луч $KA$ является биссектрисой угла $BKB_1$.

ВверхВниз   Решение


Найдите косинус угла при основании равнобедренного треугольника, если точка пересечения его высот лежит на вписанной в треугольник окружности.

ВверхВниз   Решение


Может ли в государстве, в котором из каждого города выходит три дороги, быть ровно 100 дорог?

ВверхВниз   Решение


Сколько существует шестизначных чисел, все цифры которых имеют одинаковую чётность?

ВверхВниз   Решение


Окружность, вписанная в треугольник $ABC$, касается его сторон $AB$, $BC$, $AC$ в точках $C_{1}$, $A_{1}$, $B_{1}$ соответственно. Пусть $A'$ – точка, симметричная $A_{1}$ относительно прямой $B_{1}C_{1}$; аналогично определяется точка $C'$. Прямые $A'C_{1}$ и $C'A_{1}$ пересекаются в точке $D$. Докажите, что $BD\parallel AC$.

ВверхВниз   Решение


От треугольника отрезали три треугольника, причём каждый из трёх разрезов коснулся вписанной в треугольник окружности. Известно, что периметры отрезанных треугольников равны P1, P2, P3. Найдите периметр исходного треугольника.

ВверхВниз   Решение


Доказать неравенство   .

ВверхВниз   Решение


В равнобедренный треугольник, у которого боковая сторона равна 100, а основание 60, вписана окружность.
Найдите расстояние между точками касания, находящимися на боковых сторонах.

ВверхВниз   Решение


Человек имеет 10 друзей и в течение нескольких дней приглашает некоторых из них в гости так, что компания ни разу не повторяется (в какой-то из дней он может не приглашать никого). Сколько дней он может так делать?

ВверхВниз   Решение


Два угла треугольника равны 40° и 80°. Найдите углы треугольника с вершинами в точках касания вписанной окружности со сторонами данного треугольника.

ВверхВниз   Решение


Докажите, что точки, симметричные точке пересечения высот треугольника ABC относительно его сторон, лежат на описанной окружности.

ВверхВниз   Решение


На окружности расположены 20 точек. Эти 20 точек попарно соединяются 10 хордами, не имеющими общих концов и непересекающихся.
Сколькими способами это можно сделать?

ВверхВниз   Решение


Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.

ВверхВниз   Решение


Сколькими способами можно разрезать ожерелье, состоящее из 30 различных бусин на 8 частей (резать можно только между бусинами)?

ВверхВниз   Решение


Найдите число прямоугольников, составленных из клеток доски с m горизонталями и n вертикалями, которые содержат клетку с координатами  (p, q).

ВверхВниз   Решение


Можно ли нарисовать на плоскости 9 отрезков так, чтобы каждый пересекался ровно с тремя другими?

ВверхВниз   Решение


Докажите, что при  a, b, c > 0  имеет место неравенство   ab/c + ac/b + bc/a ≥ a + b + c.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 200]      



Задача 30874

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 6,7

Докажите, что при a, b, c имеет место неравенство  

Прислать комментарий     Решение

Задача 30875

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 6,7

Докажите, что при  a, b, c > 0  имеет место неравенство   ab/c + ac/b + bc/a ≥ a + b + c.

Прислать комментарий     Решение

Задача 30877

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 6,7

Докажите, что при  a, b, c ≥ 0  имеет место неравенство  (ab + bc + ca)² ≥ 3abc(a + b + c).

Прислать комментарий     Решение

Задача 30878

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 6,7

Сумма трёх положительных чисел равна 6. Докажите, что сумма их квадратов не меньше 12.

Прислать комментарий     Решение

Задача 30880

Тема:   [ Неравенство Коши ]
Сложность: 3
Классы: 6,7

Сумма двух неотрицательных чисел равна 10. Какое максимальное и какое минимальное значение может принимать сумма их квадратов?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 200]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .