ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Брат и сестра делят треугольный торт так: он указывает точку на торте, а она проводит через эту точку прямолинейный разрез и выбирает себе кусок. Каждый хочет получить кусок как можно больше. Где брат должен поставить точку? Какую часть торта получит в этом случае каждый из них?

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 78]      



Задача 77983

Темы:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
[ Перегруппировка площадей ]
[ Симметрия помогает решить задачу ]
[ Неравенства с площадями ]
[ Площадь четырехугольника ]
Сложность: 4+
Классы: 8,9,10

a, b, c и d — длины последовательных сторон четырёхугольника. Обозначим через S его площадь. Доказать, что

S$\displaystyle \le$$\displaystyle {\textstyle\frac{1}{4}}$(a + b)(c + d ).

Прислать комментарий     Решение

Задача 111767

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Раскраски ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Неравенства с площадями ]
Сложность: 4+
Классы: 8,9,10,11

На плоскости отмечено несколько точек, каждая покрашена в синий, желтый или зеленый цвет. На любом отрезке, соединяющем одноцветные точки, нет точек этого же цвета, но есть хотя бы одна другого цвета. Каково максимально возможное число всех точек?
Прислать комментарий     Решение


Задача 32083

Темы:   [ Медиана делит площадь пополам ]
[ Отношение площадей подобных треугольников ]
[ Гомотетия помогает решить задачу ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Неравенства с площадями ]
Сложность: 4-
Классы: 8,9,10

Брат и сестра делят треугольный торт так: он указывает точку на торте, а она проводит через эту точку прямолинейный разрез и выбирает себе кусок. Каждый хочет получить кусок как можно больше. Где брат должен поставить точку? Какую часть торта получит в этом случае каждый из них?

Прислать комментарий     Решение

Задача 78684

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Выпуклые многоугольники ]
[ Вписанные и описанные окружности ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Неравенства с площадями ]
Сложность: 4+
Классы: 8,9,10

Внутри выпуклого многоугольника M помещена окружность максимально возможного радиуса R (это значит, что внутри M нельзя поместить окружность большего радиуса). Известно, что внутри можно провернуть отрезок длины 1 на любой угол (т.е. мы можем двигать единичный отрезок как твердый стержень по плоскости так, чтобы он не вылезал за пределы многоугольника M и при этом повернулся на любой заданный угол). Докажите, что R$ \ge$1/3.
Прислать комментарий     Решение


Задача 73672

Темы:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
[ Перегруппировка площадей ]
[ Симметрия помогает решить задачу ]
[ Теорема Птолемея ]
[ Неравенства с площадями ]
[ Площадь четырехугольника ]
Сложность: 5+
Классы: 8,9,10

Пусть a, b, c, d длины четырёх последовательных сторон четырёхугольника, S его площадь. Докажите неравенства:

а) S ab + cd;

б) S ac + bd.

в) Докажите, что если хотя бы в одном из этих неравенств достигается равенство, то четырёхугольник можно вписать в окружность.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .