ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существует ли такой набор из 10 натуральных чисел, что каждое не делится ни на одно из остальных, а квадрат каждого делится на каждое из остальных? Две окружности пересекаются в точках A и B. Пусть CD – их общая касательная (C и D – точки касания), а Oa, Ob – центры описанных окружностей треугольников CAD, CBD соответственно. Докажите, что середина отрезка OaOb лежит на прямой AB. Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному
разу, вернувшись последним ходом в исходную клетку. Сумма n положительных чисел x1, x2, x3, ..., xn равна 1. Дан треугольник со сторонами a, b и c, причём a ≥ b ≥ c; x, y и z – углы некоторого другого треугольника. Докажите, что bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²). На бесконечной шахматной доске на двух соседних по диагонали чёрных полях стоят две чёрные шашки. Можно ли дополнительно поставить на эту доску некоторое число чёрных шашек и одну белую таким образом, чтобы белая одним ходом взяла все чёрные шашки, включая две первоначально стоявшие? В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба
поставлено число, равное произведению чисел в вершинах этой грани. Сборная России по футболу выиграла у сборной Туниса со счетом 9 : 5. Докажите, что по ходу матча был момент, когда сборной России оставалось забить столько голов, сколько уже забила сборная Туниса. Прямая, параллельная стороне BC треугольника ABC, пересекает стороны AB и AC в точках P и Q соответственно. Внутри треугольника APQ взята точка M. Отрезки MB и MC пересекают отрезок PQ в точках E и F соответственно. Пусть N – вторая точка пересечения описанных окружностей ω1 и ω2 треугольников PMF и QME. Докажите, что точки A, M и N лежат на одной прямой. Применим метод Ньютона (см. задачу 61328) для
приближённого нахождения корней многочлена f(x) = x² – x – 1. Какие последовательности чисел получатся, если Две окружности пересекаются в точках A и B. Их общая касательная (та, которая ближе к точке B) касается окружностей в точках E и F. Прямая AB пересекает прямую EF в точке M. На продолжении AM за точку M выбрана точка K так, что KM = MA. Прямая KE вторично пересекает окружность, содержащую точку E, в точке C. Прямая KF вторично пересекает окружность, содержащую точку F, в точке D. Докажите, что точки C, D и A лежат на одной прямой.
Докажите, что правильный треугольник можно
разрезать на n правильных треугольников для любого n, начиная
с шести.
Общие перпендикуляры к противоположным сторонам пространственного четырёхугольника взаимно перпендикулярны.
Докажите, что если стороны пятиугольника в порядке обхода равны 4, 6, 8, 7 и 9, то его стороны не могут касаться одной окружности.
На плоскости даны три окружности одинакового радиуса. Докажите, что если все они пересекаются в одной точке, как показано на рис.1, то сумма отмеченных дуг AK, CK и EK равна 180o.
Каждая грань прямоугольного параллелепипеда 3×4×5 разделена на единичные квадратики. Можно ли вписать во все квадратики по числу так, чтобы сумма чисел в каждом клетчатом кольце ширины 1, опоясывающем параллелепипед, равнялась 120? В круге отметили точку. Разрежьте круг на а) три; б) две части так, чтобы из них можно было составить новый круг, у которого отмеченная точка будет в центре. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 182]
Барон Мюнхгаузен утверждает, что ему удалось составить некоторый прямоугольник из нескольких подобных между собой непрямоугольных треугольников. Можно ли ему верить? (Среди подобных треугольников могут быть и равные.)
Есть три треугольника: остроугольный, прямоугольный и тупоугольный. Саша взял себе один треугольник, а Боря – два оставшихся. Оказалось, что Боря может приложить (без наложения) один из своих треугольников к другому, и получить треугольник, равный Сашиному. Какой из этих треугольников взял Саша?
Разрежьте квадрат 4×4 по линиям сетки на 9 прямоугольников так, чтобы равные прямоугольники не соприкасались ни сторонами, ни вершинами.
В круге отметили точку. Разрежьте круг на а) три; б) две части так, чтобы из них можно было составить новый круг, у которого отмеченная точка будет в центре.
Можно ли какой-нибудь выпуклый многоугольник разрезать на конечное число невыпуклых четырехугольников?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 182]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке