ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29. Из вершины тупого угла А треугольника АВС опущена высота AD. Проведена окружность с центром D и радиусом DA, которая вторично пересекает стороны AB и AC в точках M и N соответственно. Найдите AC, если AB = c, AM = m и AN = n. В связном графе степени четырёх вершин равны 3, а степени остальных вершин равны 4. В прямоугольном треугольнике ABC (∠B = 90°) проведена высота BH. Окружность, вписанная в треугольник ABH, касается сторон AB, AH в точках H1, B1 соответственно; окружность, вписанная в треугольник CBH, касается сторон CB, CH в точках H2, B2 соответственно. Пусть O – центр описанной окружности треугольника H1BH2. Докажите, что OB1 = OB2. В стране 64 города, некоторые пары из них соединены дорогой, но нам неизвестно, какие именно. Можно выбрать любую пару городов и получить ответ на вопрос “есть ли дорога между ними?”. Нужно узнать, можно ли в этой стране добраться от любого города до любого другого, двигаясь по дорогам. Докажите, что не существует алгоритма, позволяющего сделать это менее чем за 2016 вопросов. Полуокружность с диаметром AD касается катета BC прямоугольного треугольника ABC в точке М (см. рисунок). а) Докажите, что производящая функция последовательности чисел Фибоначчи
F(x) = F0 + F1x + F2x² + ... + Fnxn + ... может быть записана в виде б) Пользуясь результатом задачи 61490, получите формулу Бине (см. задачу 60578. Каждое из рёбер полного графа с 17 вершинами покрашено в один из трёх цветов. Лёша нарисовал геометрическую картинку, обведя четыре раза свой пластмассовый прямоугольный треугольник, прикладывая короткий катет к гипотенузе и совмещая вершину острого угла с вершиной прямого. Оказалось, что "замыкающий" пятый треугольник – равнобедренный (см. рис., равны именно отмеченные стороны). Найдите острые углы Лёшиного треугольника? Точка D – середина гипотенузы АВ прямоугольного треугольника ABC, ∠ВАС = 35°. Точка B1 симметрична точке B относительно прямой СD. На окружности даны 10 точек. Сколькими способами можно провести пять отрезков, не имеющих общих точек, с концами в данных точках? В стране Мара расположено несколько замков. Из каждого замка ведут три дороги. Из какого-то замка выехал рыцарь. Странствуя по дорогам, он из каждого замка, стоящего на его пути, поворачивает либо направо, либо налево по отношению к дороге, по которой приехал. Рыцарь никогда не сворачивает в ту сторону, в которую он свернул перед этим. Доказать, что когда-нибудь он вернётся в исходный замок. Докажите, что в плоском графе есть вершина, степень которой не превосходит 5. Существует ли прямоугольный треугольник, у которого длины двух сторон – целые числа, а длина третьей стороны равна
Имеются два сосуда. В них разлили 1 л воды. Из
первого сосуда переливают половину воды во второй, затем из
второго переливают половину оказавшейся в нем воды в первый,
затем из первого сосуда переливают половину оказавшейся в нем
воды во второй и т. д. Докажите, что независимо от того, сколько
воды было сначала в каждом из сосудов, после 100 переливаний в
них будет
На плоскости отмечено 100 точек, никакие три из которых не лежат на одной прямой. Некоторые пары точек соединены отрезками. Известно, что никакая тройка отрезков не образует треугольника. Какое наибольшее число отрезков могло быть проведено? Международная комиссия состоит из девяти человек. Материалы комиссии хранятся в сейфе. Сколько замков должен иметь сейф, сколько ключей для них нужно изготовить и как их разделить между членами комиссии, чтобы доступ к сейфу был возможен тогда и только тогда, когда соберутся не менее шести членов комиссии? Прямая, перпендикулярная гипотенузе AB прямоугольного треугольника АВС, пересекает прямые АС и ВС в точках Е и D соответственно. В некоторой стране каждые два города соединены либо авиалинией, либо железной дорогой. Докажите, что Найти количество нечётных чисел в n-й строке треугольника Паскаля. |
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 1008]
В одном государстве 100 городов и каждый соединён с каждым дорогой с односторонним движением. Докажите, что можно поменять направление движения не более чем на одной дороге так, чтобы от каждого города можно было доехать до любого другого.
В некотором государстве 101 город. а) Каждый город соединен с каждым из остальных дорогой с односторонним движением, причём в каждый город входит 50 дорог и из каждого города выходит 50 дорог. Докажите, что из каждого города можно доехать в любой другой, проехав не более чем по двум дорогам. б) Некоторые города соединены дорогами с односторонним движением, причём в каждый город входит 40 дорог и из каждого города выходит 40 дорог. Докажите, что из каждого города можно добраться до любого другого, проехав не более чем по трём дорогам.
В ориентированном графе 101 вершина. У каждой вершины число входящих и число выходящих рёбер равно 40. Доказать, что из каждой вершины можно попасть в любую другую, пройдя не более чем по трём ребрам.
На окружности даны 10 точек. Сколькими способами можно провести пять отрезков, не имеющих общих точек, с концами в данных точках?
Найти количество нечётных чисел в n-й строке треугольника Паскаля.
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 1008]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке