ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что число разложений натурального числа n в сумму различных натуральных слагаемых равно числу разложений числа n в сумму нечетных (возможно, повторяющихся) натуральных слагаемых. Решение |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1221]
а) у этого кубика есть две соседние грани, на которых написаны соседние числа; б) таких пар соседних граней у кубика не меньше двух. Прав ли он в обоих случаях? Почему?
Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.)
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 1221] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|