Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Город считается миллионером, если в нем живет более миллиона человек. Вероятность какого события больше:
  A = {наугад выбранный городской житель живет в городе миллионере} или
  B = {наугад выбранный город – город-миллионер}?

Возьмите статистику численности городского населения России с сайта http://www.perepis2002.ru/ct/doc/1_TOM_01_05.xls. Проверьте, справедлив ли для России ваш вывод, сделанный ранее. Для этого подсчитайте вероятность того, что наугад выбранный городской житель живёт в городе-миллионере, и вероятность того, наугад выбранный город – миллионер, и сравните их.

Вниз   Решение


Докажите, что во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.

ВверхВниз   Решение


На каждой из сторон треугольника ABC построено по прямоугольнику так, что они попарно касаются вершинами (см. рисунок).
Докажите, что прямые, соединяющие вершины треугольника ABC с соответствующими вершинами треугольника A1B1C1, пересекаются в одной точке.

ВверхВниз   Решение


Докажите, что первые три цифры частного     суть 0,239.

ВверхВниз   Решение


Найдите ближайшее целое число к числу x, если  x = .

ВверхВниз   Решение


В круг радиуса 1 вписан пятиугольник. Докажите, что сумма длин его сторон и диагоналей меньше 17.

ВверхВниз   Решение


Каждая из 9 прямых разбивает квадрат на два четырхугольника, площади которых относятся как 2:3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 13]      



Задача 73686

Темы:   [ Отношения площадей (прочее) ]
[ Средняя линия трапеции ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 5+
Классы: 8,9

Автор: Ивлев Б.М.

Каждая из девяти прямых разбивает квадрат на два четырёхугольника, площади которых относятся как 2 : 3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.
Прислать комментарий     Решение


Задача 111528

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношения площадей (прочее) ]
Сложность: 3
Классы: 8,9

Основание треугольника равно a, а высота, опущенная на основание, равна h. В треугольник вписан квадрат, одна из сторон которого лежит на основании треугольника, а две вершины на боковых сторонах. Найдите отношение площади квадрата к площади треугольника.

Прислать комментарий     Решение

Задача 34905

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Отношения площадей (прочее) ]
[ Площадь трапеции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Каждая из 9 прямых разбивает квадрат на два четырхугольника, площади которых относятся как 2:3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.
Прислать комментарий     Решение


Задача 55006

Темы:   [ Общие четырехугольники ]
[ Выпуклые многоугольники ]
[ Отношения площадей (прочее) ]
Сложность: 3+
Классы: 8,9

Произвольный четырехугольник разделен диагоналями на четыре треугольника; площади трех из них равны 10, 20 и 30, и каждая меньше площади четвертого треугольника. Найдите площадь данного четырехугольника.

Прислать комментарий     Решение


Задача 65278

Темы:   [ Непрерывное распределение ]
[ Условная вероятность ]
[ Отношения площадей (прочее) ]
Сложность: 3+
Классы: 9,10,11

Коля и Женя договорились встретиться в метро в первом часу дня. Коля приходит на место встречи между полуднем и часом дня, ждёт 10 минут и уходит. Женя поступает точно так же.
  а) Какова вероятность того, что они встретятся?
  б) Как изменится вероятность встречи, если Женя решит прийти раньше половины первого, а Коля по-прежнему – между полуднем и часом?
  в) Как изменится вероятность встречи, если Женя решит прийти в произвольное время с 12.00 до 12.50, а Коля по-прежнему между 12.00 и 13.00?

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .