|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Величины углов при вершинах A, B, C треугольника ABC составляют арифметическую прогрессию с разностью π/7. Биссектрисы этого треугольника пересекаются в точке D. Точки A1, B1, C1 находятся на продолжениях отрезков DA, DB, DC за точки A, B, C соответственно, на одинаковом расстоянии от точки D. Докажите, что величины углов A1, B1, C1 также образуют арифметическую прогрессию. Найдите её разность. Найдите радиус сферы, описанной около конуса с радиусом основания r и высотой h. Ребро правильного тетраэдра ABCD равно a, точка K ─ середина ребра AB, точка E лежит на ребре CD и EC : ED = 3 : 1, точка F ─ центр грани ABC. Найдите угол между прямыми BC и KE, расстояние между этими прямыми и радиус сферы, проходящей через точки A, B, E и F. Вадим и Лёша спускались с горы. Вадим шёл пешком, а Лёша съезжал на лыжах в семь раз быстрее Вадима. На полпути Лёша упал, сломал лыжи и ногу и пошёл в два раза медленней Вадима. Кто первым спустится с горы? Через начало координат проведены прямые (включая оси координат),
которые делят координатную плоскость на углы в 1°. Можно ли на плоскости разместить конечное число парабол так, чтобы их внутренние области покрыли всю плоскость? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 74]
В коридоре длиной 100 м постелено 20 дорожек общей длиной 1 км. Ширина каждой дорожки равна ширине коридора.
Можно ли на плоскости разместить конечное число парабол так, чтобы их внутренние области покрыли всю плоскость?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 74] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|