Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 38]
|
|
Сложность: 3+ Классы: 8,9,10
|
Из листа клетчатой бумаги размером 11×11 клеток вырезали 15 квадратиков размером 2×2.
Докажите, что можно вырезать ещё один такой квадратик.
|
|
Сложность: 3+ Классы: 8,9,10
|
Дан треугольник с углами 30°, 70° и 80°. Разрежьте его отрезком на два треугольника так, чтобы биссектриса одного из этих треугольников и медиана второго, проведённые из концов разрезающего отрезка, были параллельны друг другу.
|
|
Сложность: 3+ Классы: 5,6,7
|
Разрежьте фигуру на рисунке на три равные части (не обязательно по линиям сетки). (Равными называются части, которые можно совместить, наложив друг на друга. При этом части можно поворачивать и переворачивать.)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Клетчатый прямоугольник размера 7×14 разрезали по линиям сетки на квадраты 2×2 и уголки из трёх клеток. Могло ли квадратов получиться
а) столько же, сколько уголков;
б) больше, чем уголков?
|
|
Сложность: 3+ Классы: 5,6,7
|
Малый и Большой острова имеют прямоугольную форму и разделены на прямоугольные графства. В каждом графстве проложена дорога по одной из диагоналей. На каждом острове эти дороги образуют замкнутый путь, который ни через какую точку не проходит дважды. Вот как устроен Малый остров, где всего шесть графств (см. рис.).
Нарисуйте, как может быть устроен Большой остров, если на нём нечётное число графств. Сколько графств у вас получилось?
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 38]