ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]      



Задача 66886

Тема:   [ Разрезания (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Существует ли прямоугольник, который можно разрезать на 100 прямоугольников, которые все ему подобны, но среди которых нет двух одинаковых?
Прислать комментарий     Решение


Задача 67165

Темы:   [ Разрезания (прочее) ]
[ Площадь (прочее) ]
[ Правильные многоугольники ]
Сложность: 5
Классы: 10,11

У N друзей есть круглая пицца. Разрешается провести не более 100 прямолинейных разрезов, не перекладывая части до окончания разрезаний, после чего распределить все получившиеся кусочки между всеми друзьями так, чтобы каждый получил суммарно одну и ту же долю пиццы по площади. Найдутся ли такие разрезания, если а) N = 201; б) N = 400?
Прислать комментарий     Решение


Задача 116053

Темы:   [ Разрезания (прочее) ]
[ Индукция в геометрии ]
Сложность: 5
Классы: 10,11

Квадрат ABCD разрезан на одинаковые прямоугольники с целыми длинами сторон. Фигура F является объединением всех прямоугольников, имеющих общие точки с диагональю AC. Докажите, что AC делит площадь фигуры F пополам.

Прислать комментарий     Решение

Задача 77899

Тема:   [ Разрезания (прочее) ]
Сложность: 5
Классы: 9,10

Докажите, что к квадрату нельзя приложить более 8 не налегающих друг на друга квадратов.
Прислать комментарий     Решение


Задача 58283

Тема:   [ Разрезания (прочее) ]
Сложность: 6
Классы: 8,9

Докажите, что к квадрату нельзя приложить более 8 не налегающих друг на друга квадратов.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .