ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вокруг окружности описан пятиугольник, длины сторон которого – целые числа, а первая и третья стороны равны 1.
На какие отрезки делит вторую сторону точка касания?

   Решение

Задачи

Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 769]      



Задача 109670

Темы:   [ Гомотетия помогает решить задачу ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 6-
Классы: 9,10,11

Проведем через основание биссектрисы угла A разностороннего треугольника ABC отличную от стороны BC касательную к вписанной в треугольник окружности. Точку ее касания с окружностью обозначим через Ka . Аналогично построим точки Kb и Kc . Докажите, что три прямые, соединяющие точки Ka , Kb и Kc с серединами сторон BC , CA и AB соответственно, имеют общую точку, причем эта точка лежит на вписанной окружности.
Прислать комментарий     Решение


Задача 78048

Темы:   [ Окружности, вписанные в сегмент ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 6
Классы: 9,10

Две окружности касаются друг друга внешним образом и третьей изнутри. Проводятся внешняя и внутренняя общие касательные к первым двум окружностям. Доказать, что внутренняя касательная делит пополам дугу, отсекаемую внешней касательной на третьей окружности.
Прислать комментарий     Решение


Задача 116360

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства касательной ]
[ Две касательные, проведенные из одной точки ]
[ Теорема синусов ]
Сложность: 3-
Классы: 8,9,10

Найдите радиусы вписанной и вневписанных окружностей треугольника со сторонами 3, 4, 5.
Прислать комментарий     Решение


Задача 52806

Темы:   [ Касающиеся окружности ]
[ Концентрические окружности ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Даны две концентрические окружности радиусов 1 и 3 с общим центром O. Третья окружность касается их обеих. Найдите угол между касательными к третьей окружности, проведёнными из точки O.

Прислать комментарий     Решение


Задача 35144

Темы:   [ Вписанные и описанные многоугольники ]
[ Пятиугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 9,10

Вокруг окружности описан пятиугольник, длины сторон которого – целые числа, а первая и третья стороны равны 1.
На какие отрезки делит вторую сторону точка касания?

Прислать комментарий     Решение

Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .