Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Даны две пересекающиеся окружности с центрами O1, O2. Постройте окружность, касающуюся одной из них внешним, а другой внутренним образом, центр которой удален от прямой O1O2 на наибольшее расстояние.

Вниз   Решение


Автор: Фольклор

Дан квадрат, внутри которого лежит точка O. Докажите, что сумма углов OAB, OBC, OCD и ODA отличается от 180° не больше чем на 45°.

ВверхВниз   Решение


В прямоугольном треугольнике известны отрезки a и b , на которые точка касания вписанного в треугольник круга делит гипотенузу. Найдите площадь этого треугольника.

ВверхВниз   Решение


На плоскости даны 16 точек (см. рисунок).

  а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата.
  б) Покажите, что можно обойтись стиранием шести точек.
  в) Найдите минимальное число точек, которые достаточно стереть для этого.

ВверхВниз   Решение


Дан параллелограмм ABCD. Две окружности с центрами в вершинах A и C проходят через D. Прямая l проходит через D и вторично пересекает окружности в точках X, Y. Докажите, что  BX = BY.

ВверхВниз   Решение


Незнайка разрезал фигуру на трёхклеточные и четырёхклеточные уголки, нарисованные справа от неё. Сколько трёхклеточных уголков могло получиться?

ВверхВниз   Решение


Точка M лежит на стороне BC треугольника ABC . Известно, что радиус окружности, вписанной в треугольник ABM , в два раза больше радиуса окружности, вписанной в треугольник ACM . Может ли отрезок AM оказаться медианой треугольника ABC ?

ВверхВниз   Решение


В треугольнике ABC провели биссектрису CK, а в треугольнике BCK – биссектрису KL. Прямые AC и KL пересекаются в точке M. Известно, что
A > ∠C.  Докажите, что  AK + KC > AM.

ВверхВниз   Решение


Автор: Федотов А.

В треугольник ABC вписана окружность с центром O. Медиана AD пересекает её в точках X и Y. Найдите угол XOY, если  AC = AB + AD.

ВверхВниз   Решение


Две окружности O и O1 пересекаются в точке A . Провести через точку A такую прямую, чтобы отрезок BC , высекаемый на ней окружностями O и O1 , был равен данному.

ВверхВниз   Решение


Разрежьте данную фигуру на три одинаковые части.

ВверхВниз   Решение


За круглым столом совещались 2n депутатов. После перерыва эти же 2n депутатов расселись вокруг стола, но уже в другом порядке.
Доказать, что найдутся два депутата, между которыми как до, так и после перерыва сидело одинаковое число человек.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 61]      



Задача 78489

Темы:   [ Раскладки и разбиения ]
[ Комбинаторика орбит ]
[ Перестановки и подстановки (прочее) ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7,8

Завод выпускает погремушки в виде кольца с надетыми на него тремя красными и семью синими шариками. Сколько различных погремушек может быть выпущено? (Две погремушки считаются одинаковыми, если одна из них может быть получена из другой только передвижением шариков по кольцу и переворачиванием.)

Прислать комментарий     Решение

Задача 35561

Темы:   [ Отношение порядка ]
[ Соображения непрерывности ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3+
Классы: 9,10

Некто расставил в произвольном порядке 10-томное собрание сочинений. Назовём беспорядком пару томов, для которых том с большим номером стоит левее. Для данной расстановки томов посчитано число S всех беспорядков. Какие значения может принимать S?

Прислать комментарий     Решение

Задача 66350

Темы:   [ Правило произведения ]
[ Комбинаторика орбит ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

В зале стоят шесть стульев в два ряда – по три стула в каждом, один ряд ровно за другим. В зал пришли шесть человек различного роста.
Сколькими способами можно рассадить их так, чтобы каждый человек, сидящий в первом ряду, был ниже человека, сидящего за ним?

Прислать комментарий     Решение

Задача 105076

Темы:   [ Полуинварианты ]
[ Двоичная система счисления ]
[ Перестановки и подстановки (прочее) ]
[ Процессы и операции ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10

В колоде часть карт лежит рубашкой вниз. Время от времени Петя вынимает из колоды пачку из одной или нескольких подряд идущих карт, в которой верхняя и нижняя карты лежат рубашкой вниз, переворачивает всю пачку как одно целое и вставляет её в то же место колоды (если "пачка" состоит лишь из одной карты, то требуется только, чтобы она лежала рубашкой вниз). Докажите, что в конце концов все карты лягут рубашкой вверх, как бы ни действовал Петя.

Прислать комментарий     Решение

Задача 35181

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
[ Перестановки и подстановки (прочее) ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

За круглым столом совещались 2n депутатов. После перерыва эти же 2n депутатов расселись вокруг стола, но уже в другом порядке.
Доказать, что найдутся два депутата, между которыми как до, так и после перерыва сидело одинаковое число человек.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 61]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .