ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каково максимальное значение, которое может принимать площадь проекции правильного тетраэдра с ребром 1?

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 165]      



Задача 116173

Темы:   [ Пересекающиеся окружности ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 3+
Классы: 9,10,11

Две окружности пересекаются в точках P и Q. Tочка A лежит на первой окружности, но вне второй. Прямые AP и AQ пересекают вторую окружность в точках B и C соответственно. Укажите положение точки A, при котором треугольник ABC имеет наибольшую площадь.

Прислать комментарий     Решение

Задача 116915

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Экстремальные свойства окружности и криволинейных фигур ]
Сложность: 3+
Классы: 9,10

Автор: Нилов Ф.

В окружность Ω вписан четырёхугольник ABCD, диагонали AC и BD которого перпендикулярны. На сторонах AB и CD во внешнюю сторону как на диаметрах построены дуги α и β. Рассмотрим две луночки, образованные окружностью Ω и дугами α и β (см. рис.). Докажите, что максимальные радиусы окружностей, вписанных в эти луночки, равны.

Прислать комментарий     Решение

Задача 35189

Темы:   [ Стереометрия (прочее) ]
[ Экстремальные свойства (прочее) ]
Сложность: 3+
Классы: 10,11

Каково максимальное значение, которое может принимать площадь проекции правильного тетраэдра с ребром 1?
Прислать комментарий     Решение


Задача 35191

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Экстремальные свойства (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Число ребер выпуклого многогранника равно 99. Какое наибольшее число ребер может пересечь плоскость, не проходящая через его вершины?
Прислать комментарий     Решение


Задача 55242

Темы:   [ Неравенство треугольника ]
[ Четырехугольники (экстремальные свойства) ]
Сложность: 3+
Классы: 8,9

Найдите точку, сумма расстояний от которой до вершин данного выпуклого четырёхугольника минимальна

Прислать комментарий     Решение


Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 165]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .