ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Прямые, касающиеся окружности с центром O в точках A и B, пересекаются в точке M. Найдите хорду AB, если отрезок MO делится ею на отрезки, равные 2 и 18. Точка внутри выпуклого четырёхугольника соединена с вершинами. Получились четыре равных треугольника. Три простых числа p, q и r, большие 3, образуют арифметическую прогрессию: q = p + d, r = p + 2d. Докажите, что d делится на 6. а) Из какого минимального числа кусков проволоки можно спаять каркас куба?
Точка M делит сторону BC треугольника ABC в отношении
BM : MC = 2 : 5, Известно, что
Решите уравнение
(x2 + x)2 +
В хоккейном турнире принимают участие n команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места? |
Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 1119]
В центре квадратного пруда плавает ученик. Внезапно к вершине квадрата подошёл учитель. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем ученик плавает. Ученик бегает быстрее. Сможет ли он убежать?
Из посёлка Морозки ведет прямая дорога, в стороне от неё, на поле, расположена водокачка. Путнику нужно попасть из Морозок к водокачке. По дороге путник идет со скоростью 4 км/ч, а по полю – 3 км/ч. Как ему следует выбрать маршрут, чтобы дойти быстрее всего?
В хоккейном турнире принимают участие n команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места?
В каждой клетке таблицы 9×9 записано число, по модулю меньшее 1. Известно, что сумма чисел в каждом квадратике 2×2 равна 0.
Пять моряков высадились на остров и к вечеру набрали кучу кокосовых орехов. Дележ отложили на утро. Один из них, проснувшись ночью, угостил одним орехом мартышку, а из остальных орехов взял себе точно пятую часть, после чего лёг спать и быстро уснул. За ночь так же поступили один за другим и остальные моряки; при этом каждый не знал о действиях предшественников. На утро они поделили оставшиеся орехи поровну, но для мартышки в этот раз лишнего ореха не осталось. Каким могло быть наименьшее число орехов в собранной куче?
Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 1119]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке