ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Три последовательных угла вписанного четырёхугольника относятся как 1:2:3. Найдите все углы четырёхугольника.

Вниз   Решение


Метод итераций. Для того, чтобы приближенно решить уравнение, допускающее запись f (x) = x, применяется метод итераций. Сначала выбирается некоторое число x0, а затем строится последовательность {xn} по правилу xn + 1 = f (xn) (n $ \geqslant$ 0). Докажите, что если эта последовательность имеет предел x* = $ \lim\limits_{n\to\infty}^{}$xn, и функция f (x) непрерывна, то этот предел является корнем исходного уравнения: f (x*) = x*.

ВверхВниз   Решение


Найдите косинус угла при основании равнобедренного треугольника, если точка пересечения его высот лежит на вписанной в треугольник окружности.

ВверхВниз   Решение


Существует ли на координатной плоскости точка, относительно которой симметричен график функции $f(x)=\frac{1}{2^x+1}$?

ВверхВниз   Решение


Точки A, B и C расположены на одной прямой. Через точку B проходит некоторая прямая. Пусть M - произвольная точка на этой прямой. Докажите, что расстояние между центрами окружностей, описанных около треугольников ABM и CBM не зависит от положения точки M. Найдите это расстояние, если AC = a, $ \angle$MBC = $ \alpha$.

ВверхВниз   Решение


Расстояние между центрами окружностей больше суммы их радиусов.
Докажите, что середины отрезков четырёх общих касательных этих окружностей лежат на одной прямой.

ВверхВниз   Решение


Дан вписанный четырехугольник $ABCD$. Пусть $E=AC\cap BD$, $F=AD\cap BC$. Биссектрисы углов $AFB$ и $AEB$ пересекают $CD$ в точках $X, Y$. Докажите, что точки $A, B, X, Y$ лежат на одной окружности.

ВверхВниз   Решение


От треугольника отрезали три треугольника, причём каждый из трёх разрезов коснулся вписанной в треугольник окружности. Известно, что периметры отрезанных треугольников равны P1, P2, P3. Найдите периметр исходного треугольника.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 793]      



Задача 35634

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

От треугольника отрезали три треугольника, причём каждый из трёх разрезов коснулся вписанной в треугольник окружности. Известно, что периметры отрезанных треугольников равны P1, P2, P3. Найдите периметр исходного треугольника.

Прислать комментарий     Решение

Задача 52845

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3
Классы: 8,9

Найдите косинус угла при основании равнобедренного треугольника, если точка пересечения его высот лежит на вписанной в треугольник окружности.

Прислать комментарий     Решение

Задача 52874

Темы:   [ Вписанные и описанные окружности ]
[ Признаки подобия ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

В равнобедренный треугольник, у которого боковая сторона равна 100, а основание 60, вписана окружность.
Найдите расстояние между точками касания, находящимися на боковых сторонах.

Прислать комментарий     Решение

Задача 53586

Темы:   [ Вписанные и описанные окружности ]
[ Теорема синусов ]
Сложность: 3
Классы: 8,9

Найдите периметр треугольника, один из углов которого равен α , а радиусы вписанной и описанной окружностей равны r и R .
Прислать комментарий     Решение


Задача 53589

Темы:   [ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 3
Классы: 8,9

Точки A, B и C расположены на одной прямой. Через точку B проходит некоторая прямая. Пусть M - произвольная точка на этой прямой. Докажите, что расстояние между центрами окружностей, описанных около треугольников ABM и CBM не зависит от положения точки M. Найдите это расстояние, если AC = a, $ \angle$MBC = $ \alpha$.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 793]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .