ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Положительные иррациональные числа a и b таковы, что 1/a+1/b=1. Докажите, что среди чисел [ma], [nb] каждое натуральное число встречается ровно один раз.

   Решение

Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 416]      



Задача 109754

Темы:   [ Показательные функции и логарифмы ]
[ Возрастание и убывание. Исследование функций ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 5-
Классы: 10,11

Докажите, что для всех x(0;) при n>m , где n,m – натуральные, справедливо неравенство

2| sinn x- cosn x| 3| sinm x- cosm x|;

Прислать комментарий     Решение

Задача 35708

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Рациональные и иррациональные числа ]
[ Неопределено ]
Сложность: 5
Классы: 10,11

Положительные иррациональные числа a и b таковы, что 1/a+1/b=1. Докажите, что среди чисел [ma], [nb] каждое натуральное число встречается ровно один раз.
Прислать комментарий     Решение


Задача 61338

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Предел последовательности, сходимость ]
Сложность: 5
Классы: 10,11

Последовательность чисел a1, a2, a3,...задается условиями

a1 = 1,        an + 1 = an + $\displaystyle {\dfrac{1}{a_n^2}}$        (n $\displaystyle \geqslant$ 0).

Докажите, что
а) эта последовательность неограничена;
б) a9000 > 30;
в) найдите предел $ \lim\limits_{n\to\infty}^{}$$ {\dfrac{a_n}{\sqrt[3]n}}$.

Прислать комментарий     Решение

Задача 61516

Темы:   [ Формальные степенные ряды ]
[ Ряды Тейлора и Маклорена ]
Сложность: 5
Классы: 10,11

Найдите общую формулу для коэффициентов ряда

(1 - 4x)- $\scriptstyle {\textstyle\frac{1}{2}}$ = 1 + 2x + 6x2 + 20x3 +...+ anxn +...


Прислать комментарий     Решение

Задача 67188

Темы:   [ Троичная система счисления ]
[ Числовые последовательности (прочее) ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 8,9,10

Автор: Бутырин Б.

Назовём тройку чисел триплетом, если одно из них равно среднему арифметическому двух других. Последовательность $(a_n)$ строится следующим образом: $a_0 = 0$, $a_1 = 1$ и при $n > 1$ число $a_n$ — такое минимальное натуральное число, большее $a_{n-1}$, что среди чисел $a_0$, $a_1$, ..., $a_n$ нет трёх, образующих триплет. Докажите, что $a_{2023} \leqslant 100\,000$.
Прислать комментарий     Решение


Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .