Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Найдите последние две цифры в десятичной записи числа  1! + 2! + ... + 2001! + 2002!.

Вниз   Решение


В треугольнике ABC проведены биссектрисы CF и AD. Найдите отношение  SAFD : SABC,  если  AB : AC : BC = 21 : 28 : 20.

ВверхВниз   Решение


Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A.

ВверхВниз   Решение


Точка M расположена на стороне CD квадрата ABCD с центром O, причём  CM : MD = 1 : 2.
Найдите стороны треугольника AOM, если сторона квадрата равна 6.

ВверхВниз   Решение


Математик с пятью детьми зашёл в пиццерию.
  Маша: Мне с помидорами и чтоб без колбасы.
  Ваня: А мне с грибами.
  Даша: Я буду без помидоров.
  Никита: А я с помидорами. Но без грибов!
  Игорь: И я без грибов. Зато с колбасой!
  Папа: Да, с такими привередами одной пиццей явно не обойдёшься...
Сможет ли математик заказать две пиццы и угостить каждого рeбенка такой, какую тот просил, или все же придется три пиццы заказывать?

ВверхВниз   Решение


Угол при вершине A ромба ABCD равен 20°. Точки M и N – основания перпендикуляров, опущенных из вершины B на стороны AD и CD.
Найдите углы треугольника BMN.

ВверхВниз   Решение


Григорианский календарь. Обыкновенный год содержит 365 дней, високосный – 366. n-й год, номер которого не делится на 100, является високосным тогда и только тогда, когда n кратно 4. n-й год, где n кратно 100, является високосным тогда и только тогда, когда n кратно 400. Так, например, 1996 и 2000 годы високосные, а 1997 и 1900 – нет. Эти правила были установлены папой Григорием XIII. До сих пор мы имели ввиду гражданский год, число дней которого должно быть целым. Астрономическим же годом называется период времени, за который Земля совершает полный оборот вокруг Солнца. Считая, что григорианский год полностью согласован с астрономическим, найдите продолжительность астрономического года.

ВверхВниз   Решение


Сторона основания правильной треугольной пирамиды равна a , боковое ребро образует с плоскостью основания угол α . Найдите радиус описанного шара.

ВверхВниз   Решение


На плоскости даны две окружности радиусов 4 и 3 с центрами в точках O1 и O2 , касающиеся некоторой прямой в точках M1 и M2 и лежащие по разные стороны от этой прямой. Отношение отрезка O1O2 к отрезку M1M2 равно . Найдите O1O2 .

ВверхВниз   Решение


Доказать, что максимальное количество сторон выпуклого многоугольника, стороны которого лежат на диагоналях данного выпуклого 100-угольника, не больше 100.

ВверхВниз   Решение


Можно ли на плоскости расположить бесконечное множество одинаковых кругов так, чтобы любая прямая пересекала не более двух кругов?

ВверхВниз   Решение


Биссектриса AD, медиана BM и высота CH остроугольного треугольника ABC пересекаются в одной точке. Докажите, что величина угла BAC больше 45°.

ВверхВниз   Решение


С помощью циркуля и линейки проведите через данную точку, лежащую внутри данного угла, прямую, отсекающую от данного угла треугольник заданного периметра.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 57230

Тема:   [ Треугольник (построения) ]
Сложность: 3
Классы: 8,9

Постройте точки X и Y на сторонах AB и BC треугольника ABC так, что AX = BY и XY| AC.
Прислать комментарий     Решение


Задача 57231

Тема:   [ Треугольник (построения) ]
Сложность: 3
Классы: 8,9

Постройте треугольник по сторонам a и b, если известно, что угол против одной из них в три раза больше угла против другой.
Прислать комментарий     Решение


Задача 64911

Темы:   [ Треугольник (построения) ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 3+
Классы: 8,9

Восстановите треугольник ABC по прямым lb и lc, содержащим биссектрисы углов B и C, и основанию биссектрисы угла A – точке L1.

Прислать комментарий     Решение

Задача 109002

Темы:   [ Треугольник (построения) ]
[ Отношения линейных элементов подобных треугольников ]
[ Четырехугольники (экстремальные свойства) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

В данный прямоугольный треугольник вписать прямоугольник наибольшей площади так, чтобы все вершины прямоугольника лежали на сторонах треугольника.

Прислать комментарий     Решение

Задача 35757

Темы:   [ Треугольник (построения) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 9,10

С помощью циркуля и линейки проведите через данную точку, лежащую внутри данного угла, прямую, отсекающую от данного угла треугольник заданного периметра.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .