Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

В выпуклом четырёхугольнике ABCD выполнены соотношения  AB = BD,  ∠ABD = ∠DBC.  На диагонали BD нашлась такая точка K, что  BK = BC.
Докажите, что  ∠KAD = ∠KCD.

Вниз   Решение


Прямая l пересекает стороны AB и AD и диагональ AC параллелограмма ABCD в точках E, F и G соответственно. Докажите, что  AB/AE + AD/AF = AC/AG.

ВверхВниз   Решение


В точках A и B прямой, по одну сторону от неё, восстановлены два перпендикуляра  AA1 = a  и   BB1 = b.
Докажите, что точка пересечения прямых AB1 и A1B будет находиться на одном и том же расстоянии от прямой AB независимо от положения точек A и B.

ВверхВниз   Решение


В ряд выписаны несколько нулей и единиц. Рассмотрим пары цифр в этом ряду (не только соседних), где левая цифра равна 1, а правая 0. Пусть среди этих пар ровно M таких, что между единицей и нулем этой пары стоит чётное число цифр, и ровно N таких, что между единицей и нулем этой пары стоит нечётное число цифр. Докажите, что  M ≥ N.

ВверхВниз   Решение


(sin x, sin y, sin z)  – возрастающая арифметическая прогрессия. Может ли последовательность  (cos x, cos y, cos z)  также являться арифметической прогрессией?

ВверхВниз   Решение


Решите уравнение

arcsin$\displaystyle {\dfrac{x^2-8}{8}}$ = 2 arcsin$\displaystyle {\dfrac{x}{4}}$ - $\displaystyle {\dfrac{\pi}{2}}$.


ВверхВниз   Решение


Пусть c — наибольшая сторона треугольника со сторонами a, b, c. Докажите, что если a2 + b2 > c2, то треугольник остроугольный, а если a2 + b2 < c2, — тупоугольный.

ВверхВниз   Решение


На плоскости нарисовали 10 равных отрезков и отметили все их точки пересечения. Оказалось, что каждая точка пересечения делит любой проходящий через неё отрезок в отношении  3 : 4.  Каково наибольшее возможное число отмеченных точек?

ВверхВниз   Решение


В выпуклом четырехугольнике АВСD точка Е — середина CD, F — середина АD, K — точка пересечения АС и ВЕ. Докажите, что площадь треугольника BKF в два раза меньше площади треугольника АВС.

Вверх   Решение

Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 462]      



Задача 55112

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены биссектрисы BD и AE. Найдите отношение площадей треугольников ABC и BDE, если AB = 5, BC = 8, AC = 7.

Прислать комментарий     Решение


Задача 102221

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC стороны AB и BC равны между собой, AC = 2, а $ \angle$ACB = 30o. Из вершины A к боковой стороне BC проведены биссектриса AE и медиана AD. Найдите площадь треугольника ADE.
Прислать комментарий     Решение


Задача 102407

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC, площадь которого равна 2. На медианах AK, BL и CN треугольника ABC взяты соответственно точки P, Q и R так, что AP : PK = 1, BQ : QL = 1 : 2, CR : RN = 5 : 4. Найдите площадь треугольника PQR.

Прислать комментарий     Решение


Задача 102408

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

На сторонах выпуклого четырёхугольника ABCD, площадь которого равна 2, взяты точки: K на AB, L на BC, M на CD, N на AD. При этом AK : KB = 2, BL : LC = 1 : 3, CM : MD = 1, DN : NA = 1 : 5. Найдите площадь шестиугольника AKLCMN.

Прислать комментарий     Решение


Задача 36995

Темы:   [ Медиана делит площадь пополам ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 9,10

В выпуклом четырехугольнике АВСD точка Е — середина CD, F — середина АD, K — точка пересечения АС и ВЕ. Докажите, что площадь треугольника BKF в два раза меньше площади треугольника АВС.

Прислать комментарий     Решение

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 462]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .