Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Около остроугольного треугольника ABC описана окружность. На её меньших дугах BC , AC и AB взяты точки A1 , B1 и C1 соответственно. Точки A2 , B2 и C2 – ортоцентры треугольников соответственно BA1C , AB1C и AC1B . Докажите, что описанные окружности треугольников BA2C , AB2C и AC2B пересекаются в одной точке.

Вниз   Решение


Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то плоскости параллельны.

ВверхВниз   Решение


Рассмотрим последовательность, первые два члена которой равны 1 и 2 соответственно, а каждый следующий член – это наименьшее натуральное число, которое еще не встретилось в последовательности и которое не взаимно просто с предыдущим членом последовательности. Докажите, что каждое натуральное число входит в эту последовательность.

ВверхВниз   Решение


Каждое звено несамопересекающейся ломаной состоит из нечётного числа сторон клеток квадрата 100×100, соседние звенья перпендикулярны.
Может ли ломаная пройти через все вершины клеток?

ВверхВниз   Решение


Четырехугольник имеет ось симметрии. Докажите, что этот четырехугольник либо является равнобедренной трапецией, либо симметричен относительно диагонали.

ВверхВниз   Решение


Докажите, что в прямоугольном треугольнике медиана, проведённая к гипотенузе, равна её половине.

ВверхВниз   Решение


В пирамиде ABCD площадь грани ABC в четыре раза больше площади грани ABD . На ребре CD взята точка M , причём CM:MD = 2 . Через точку M проведены плоскости, параллельные граням ABC и ABD . Найдите отношение площадей получившихся сечений.

ВверхВниз   Решение


Докажите, что в десятичной записи чисел 19902003 и  19902003 + 22003  одинаковое число цифр.

ВверхВниз   Решение


В треугольнике АВС  М – точка пересечения медиан, О – центр вписанной окружности.
Докажите, что если прямая ОМ параллельна стороне ВС, то точка О равноудалена от середин сторон АВ и АС.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 [Всего задач: 50]      



Задача 64327

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3+
Классы: 7,8

Высота AK, биссектриса BL и медиана CM треугольника АВС пересекаются в точке О, причём  АО = ВО.
Докажите, что треугольник АВС – равносторонний.

Прислать комментарий     Решение

Задача 37004

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Две касательные, проведенные из одной точки ]
[ Признаки равенства прямоугольных треугольников ]
[ Вписанные и описанные окружности ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4-
Классы: 10

В треугольнике АВС  М – точка пересечения медиан, О – центр вписанной окружности.
Докажите, что если прямая ОМ параллельна стороне ВС, то точка О равноудалена от середин сторон АВ и АС.

Прислать комментарий     Решение

Задача 109556

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Ортоцентр и ортотреугольник ]
[ Правильный тетраэдр ]
[ Признаки равенства прямоугольных треугольников ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 5-
Классы: 10,11

Высоты AA1, BB1, CC1 и DD1 тетраэдра ABCD пересекаются в центре H сферы, вписанной в тетраэдр A1B1C1D1.
Докажите, что тетраэдр ABCD – правильный.

Прислать комментарий     Решение

Задача 116168

Темы:   [ Параллелограммы (прочее) ]
[ Метод ГМТ ]
[ ГМТ - прямая или отрезок ]
[ ГМТ - окружность или дуга окружности ]
[ Признаки равенства прямоугольных треугольников ]
[ Средняя линия трапеции ]
[ Четырехугольники (построения) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Постройте параллелограмм ABCD, если на плоскости отмечены три точки: середины его высот BH и BP и середина стороны AD.

Прислать комментарий     Решение

Задача 116887

Темы:   [ Куб ]
[ Сечения, развертки и остовы (прочее) ]
[ Шестиугольники ]
[ Правильные многоугольники ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

В кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников.
Найдите длину отрезка, по которому эти сечения пересекаются.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .