Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Даны отрезки a и b. Постройте такой отрезок x, что

$\displaystyle \root$4$\displaystyle \of$x = $\displaystyle \root$4$\displaystyle \of$a + $\displaystyle \root$4$\displaystyle \of$b.

Вниз   Решение


Автор: Фольклор

p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство:  p(a) – p(b) = 1.
Докажите, что a и b различаются на 1.

ВверхВниз   Решение


На какое наименьшее число тетраэдров можно разбить куб?

ВверхВниз   Решение


Сколькими способами можно выбрать четырёх человек на четыре различные должности, если имеется девять кандидатов на эти должности?

ВверхВниз   Решение


Последовательность чисел x0, x1, x2,...задается условиями

x0 = 1,        xn + 1 = axn    (n $\displaystyle \geqslant$ 0).

Найдите наибольшее число a, для которого эта последовательность имеет предел. Чему равен этот предел для такого a?

ВверхВниз   Решение


Докажите, что прямая, содержащая среднюю линию треугольника, параллельна стороне треугольника, а средняя линия треугольника равна половине этой стороны.

ВверхВниз   Решение


Можно ли разбить правильный треугольник на миллион многоугольников так, чтобы никакая прямая не пересекала более сорока из этих многоугольников?

Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку.

ВверхВниз   Решение


Автор: Бона М.

В турнире участвуют 2m команд. В первом туре встретились некоторые m пар команд, во втором – другие m пар.
Докажите, что после этого можно выбрать m команд, никакие две из которых ещё не играли между собой.

ВверхВниз   Решение


Докажите, что вписанный угол равен половине соответствующего центрального угла (или дуги) окружности.

Вверх   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 830]      



Задача 116538

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Рассматриваются все треугольники АВС, у которых положение вершин В и С зафиксировано, а вершина А перемещается в плоскости треугольника так, что медиана СМ имеет одну и ту же длину. По какой траектории движется точка А?

Прислать комментарий     Решение

Задача 34925

Темы:   [ Подсчет двумя способами ]
[ Ломаные ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовём пару несоседних звеньев особой, если продолжение одного из них пересекает другое звено. Докажите, что число особых пар чётно.

Прислать комментарий     Решение

Задача 35586

Темы:   [ Системы точек и отрезков (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Малые шевеления ]
Сложность: 3+
Классы: 8,9,10

На плоскости нарисовано несколько точек. Докажите, что можно провести прямую так, чтобы расстояния от всех точек до неё были различными.

Прислать комментарий     Решение

Задача 35651

Темы:   [ Покрытия ]
[ Прямые, лучи, отрезки и углы (прочее) ]
Сложность: 3+
Классы: 8,9,10

Дано бесконечное число углов. Докажите, что этими углами можно покрыть плоскость.

Прислать комментарий     Решение

Задача 37002

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Ломаные ]
[ Признаки и свойства параллелограмма ]
[ Призма (прочее) ]
Сложность: 3+
Классы: 10,11

Существует ли в пространстве замкнутая самопересекающаяся ломаная, которая пересекает каждое свое звено ровно один раз, причём в его середине?

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 830]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .