ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC  AB = BC = 6.  На стороне AB как на диаметре построена окружность, пересекающая сторону BC в точке D так, что  BD : DC = 2 : 1.
Найдите AC.

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 541]      



Задача 55260

Темы:   [ Теорема косинусов ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

В прямоугольном треугольнике ABC катет AC = 15 и катет BC = 20. На гипотенузе AB отложен отрезок AD, равный 4, и точка D соединена с C. Найдите CD.

Прислать комментарий     Решение


Задача 56655

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 7,8,9

Две окружности радиусов R и r касаются внешним образом (т. е. ни одна из них не лежит внутри другой). Найдите длину общей касательной к этим окружностям.
Прислать комментарий     Решение


Задача 35137

Темы:   [ Площадь круга, сектора и сегмента ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Хорды и секущие (прочее) ]
Сложность: 3-
Классы: 8,9,10

Даны две концентрические окружности. Хорда большей из них касается меньшей и имеет длину 2.
Найдите площадь кольца, заключенного между окружностями.

Прислать комментарий     Решение

Задача 52378

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

В треугольнике ABC  AB = BC = 6.  На стороне AB как на диаметре построена окружность, пересекающая сторону BC в точке D так, что  BD : DC = 2 : 1.
Найдите AC.

Прислать комментарий     Решение

Задача 52768

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Хорды и секущие (прочее) ]
Сложность: 3-
Классы: 8,9

Окружность радиуса r касается некоторой прямой в точке M. На этой прямой по разные стороны от M взяты точки A и B, причём  MA = MB = a.
Найдите радиус окружности, проходящей через точки A и B и касающейся данной окружности.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 541]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .