ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Во вписанном четырёхугольнике ABCD известны углы: ∠DAB = α, ∠ABC = β, ∠BKC = γ, где K – точка пересечения диагоналей. Найдите угол ACD. Решение |
Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 1275]
Четырёхугольник ABCD вписан в окружность с центром в точке O, AO ⊥ OB, OC ⊥ OD. Перпендикуляр, опущенный из вершины C на прямую AD, равен 9,
Во вписанном четырёхугольнике ABCD известны углы: ∠DAB = α, ∠ABC = β, ∠BKC = γ, где K – точка пересечения диагоналей. Найдите угол ACD.
Четырёхугольник ABCD вписан в окружность. Диагональ AC является биссектрисой угла BAD и пересекается с диагональю BD в точке K.
Даны две окружности, пересекающиеся в точках A и D; AB и CD – касательные к первой и второй окружностям (B и C – точки на окружностях).
Из одной точки проведены касательная и секущая к некоторой окружности.
Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 1275] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|