Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Пусть E и F — середины сторон BC и AD параллелограмма ABCD. Найдите площадь четырехугольника, образованного прямыми AE, ED, BF и FC, если известно, что площадь ABCD равна S.

Вниз   Решение


В треугольной пирамиде SABC известно, что AB = AC = 10 , BC = 16 . Высота пирамиды, опущенная из вершины S , проходит через вершину B и равна 4. Найдите полную поверхность пирамиды и радиус шара, вписанного в пирамиду.

ВверхВниз   Решение


На плоскости проведены n прямых так, что каждые две пересекаются, но никакие четыре через одну точку не проходят. Всего имеются 16 точек пересечения, причём через 6 из них проходят по три прямые. Найдите n.

ВверхВниз   Решение


а) Докажите, что если в треугольнике медиана совпадает с высотой, то этот треугольник равнобедренный.

б) Докажите, что если в треугольнике биссектриса совпадает с высотой, то этот треугольник равнобедренный.

ВверхВниз   Решение


Солдаты построены в две шеренги по n человек, так что каждый солдат из первой шеренги не выше стоящего за ним солдата из второй шеренги. В шеренгах солдат выстроили по росту. Докажите, что после этого каждый солдат из первой шеренги также будет не выше стоящего за ним солдата из второй шеренги.

ВверхВниз   Решение


Круглый пирог режут следующим образом. Вырезают сектор с углом $ \alpha$, переворачивают его на другую сторону и весь пирог поворачивают на угол $ \beta$. Дано, что $ \beta$ < $ \alpha$ < 180o. Доказать, что после некоторого конечного числа таких операций каждая точка пирога будет находиться на том же месте, что и в начале.

ВверхВниз   Решение


Дано 25 чисел. Какие бы три из них мы ни выбрали, среди оставшихся найдётся такое четвёртое, что сумма этих четырёх чисел будет положительна. Верно ли, что сумма всех чисел положительна?

ВверхВниз   Решение


Пусть число α задаётся десятичной дробью
  а) 0,101001000100001000001...;
  б) 0,123456789101112131415....
Будет ли это число рациональным?

ВверхВниз   Решение


На окружности отмечено 100 точек. Эти точки нумеруются числами от 1 до 100 в некотором порядке.
  а) Докажите, что при любой нумерации точки можно разбить на пары так, чтобы отрезки, соединяющие точки в парах, не пересекались, а все суммы в парах были нечётны.
  б) Верно ли, что при любой нумерации можно разбить точки на пары так, чтобы отрезки, соединяющие точки в парах, не пересекались, а все суммы в парах были чётны?

ВверхВниз   Решение


На плоскости даны три точки. Из них выбираются любые две, строится серединный перпендикуляр к отрезку, их соединяющему, и все точки отражаются относительно этой прямой, затем из всех точек (старых и новых) снова выбираются какие-то две точки и вся процедура повторяется. Так делается бесконечно много раз. Доказать, что в плоскости найдётся такая прямая, что все полученные точки будут лежать по одну сторону от нее.

ВверхВниз   Решение


  Число  N = 142857  обладает и рядом других свойств. Например:  2·142857 = 285714,  3·142857 = 428571,  ..., то есть при умножении на 1, 2, 3, ..., 6 цифры циклически переставляются;  14 + 28 + 57 = 99;  N2 = 20408122449,  20408 + 122449 = 142857 = N.
  Аналогичные операции можно проделывать и с другими периодами дробей. Что получается для чисел 1/17, 1/19? Объясните эти факты.

ВверхВниз   Решение


Докажите, что 1/22+1/32+1/42+…+1/n2<1

ВверхВниз   Решение


На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 13]      



Задача 55200

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенства с углами ]
Сложность: 4
Классы: 8,9

В четырёхугольнике ABCD углы A и B равны, а $ \angle$D > $ \angle$C. Докажите, что AD < BC.

Прислать комментарий     Решение


Задача 73744

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Неравенства с углами ]
[ Неравенство Коши ]
Сложность: 5
Классы: 9,10,11

Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма
  а) меньше 2 для любого остроугольного треугольника;
  б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна  2 arctg 4/3;  а среди треугольников с тупым углом, меньшим  2 arctg 4/3,  имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.

Прислать комментарий     Решение

Задача 105132

Темы:   [ Тангенсы и котангенсы углов треугольника ]
[ Применение тригонометрических формул (геометрия) ]
[ Неравенства с углами ]
Сложность: 3+
Классы: 9,10,11

Тангенсы углов треугольника – целые числа. Чему они могут быть равны?

Прислать комментарий     Решение

Задача 105210

Темы:   [ Тангенсы и котангенсы углов треугольника ]
[ Применение тригонометрических формул (геометрия) ]
[ Неравенства с углами ]
Сложность: 4-
Классы: 9,10,11

Может ли сумма тангенсов углов одного треугольника равняться сумме тангенсов углов другого, если один из этих треугольников остроугольный, а другой тупоугольный?
Прислать комментарий     Решение


Задача 52479

Темы:   [ Диаметр, основные свойства ]
[ Наименьший или наибольший угол ]
[ Неравенства с углами ]
[ Принцип Дирихле (углы и длины) ]
[ Общие четырехугольники ]
Сложность: 4
Классы: 8,9

На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.

Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .