ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Для данной хорды MN окружности рассматриваются треугольники ABC, основаниями которых являются диаметры AB этой окружности, не пересекающие MN, а стороны AC и BC проходят через концы M и N хорды MN. Докажите, что высоты всех таких треугольников ABC, опущенные из вершины C на сторону AB, пересекаются в одной точке. Решение |
Страница: << 137 138 139 140 141 142 143 >> [Всего задач: 1275]
Серединный перпендикуляр к стороне AC треугольника ABC пересекает сторону BC в точке M. Биссектриса угла AMB пересекает описанную окружность треугольника ABC в точке K. Докажите, что прямая, проходящая через центры вписанных окружностей треугольников AKM и BKM, перпендикулярна биссектрисе угла AKB.
Дан треугольник ABC. Точка P лежит на описанной окружности треугольника ABH, где H – ортоцентр треугольника ABC. Прямые AP, BP пересекают противоположные стороны треугольника в точках A', B'. Найдите геометрическое место середин отрезков A'B'.
Дана окружность и хорда AB, отличная от диаметра. По большей дуге AB движется точка C. Окружность, проходящая через точки A, C и точку H пересечения высот треугольника ABC, повторно пересекает прямую BC в точке P. Докажите, что прямая PH проходит через фиксированную точку, не зависящую от положения точки C.
Треугольник ABC вписан в окружность. Через точки A и B проведены касательные к этой окружности, которые пересекаются в точке P. Точки X и Y — ортогональные проекции точки P на прямые AC и BC. Докажите, что прямая XY перпендикулярна медиане треугольника ABC, проведенной из вершины C.
Для данной хорды MN окружности рассматриваются треугольники ABC, основаниями которых являются диаметры AB этой окружности, не пересекающие MN, а стороны AC и BC проходят через концы M и N хорды MN. Докажите, что высоты всех таких треугольников ABC, опущенные из вершины C на сторону AB, пересекаются в одной точке.
Страница: << 137 138 139 140 141 142 143 >> [Всего задач: 1275] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|