ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В круге даны две взаимно перпендикулярные хорды. Каждая из них делится другой хордой на два отрезка, равных 3 и 7. Найдите расстояние от центра окружности до каждой хорды.

   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 401]      



Задача 52818

Темы:   [ Концентрические окружности ]
[ Диаметр, хорды и секущие ]
Сложность: 3-
Классы: 8,9

Даны две концентрические окружности и пересекающая их прямая. Докажите, что отрезки этой прямой, заключённые между между окружностями, равны.

Прислать комментарий     Решение


Задача 52529

Темы:   [ Диаметр, основные свойства ]
[ Хорды и секущие (прочее) ]
Сложность: 3-
Классы: 8,9

В круге даны две взаимно перпендикулярные хорды. Каждая из них делится другой хордой на два отрезка, равных 3 и 7. Найдите расстояние от центра окружности до каждой хорды.

Прислать комментарий     Решение


Задача 55184

Темы:   [ Неравенство треугольника ]
[ Диаметр, хорды и секущие ]
Сложность: 3-
Классы: 8,9

Докажите, что любая хорда окружности не больше диаметра и равна ему только тогда, когда сама является диаметром.

Прислать комментарий     Решение


Задача 108539

Темы:   [ Метод координат на плоскости ]
[ Хорды и секущие (прочее) ]
Сложность: 3-
Классы: 8,9,10

Найдите длину хорды, которую на прямой y = 3x высекает окружность (x + 1)2 + (y - 2)2 = 25.

Прислать комментарий     Решение


Задача 52531

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Диаметр, хорды и секущие ]
Сложность: 3
Классы: 8,9

В круге радиуса R даны два взаимно перпендикулярных диаметра. Произвольная точка окружности спроектирована на эти диаметры. Найдите расстояние между проекциями точки.

Прислать комментарий     Решение


Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .