|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В клетчатом квадрате 64*64 вырезали одну из клеток. Докажите, что оставшуюся часть квадрата можно разрезать на уголки из трех клеток. Докажите, что граф с n вершинами, степень каждой из которых не менее n–1/2, связен. Докажите неравенство для положительных значений переменных: a³b + b³c + c³a ≥ abc(a + b + c). BD — биссектриса треугольника ABC, причём AD > CD. Докажите, что AB > BC.
В равносторонний треугольник ABC вписана полуокружность с центром O на стороне AB. Некоторая касательная к полуокружности пересекает стороны BC и CA в точках M и N соответственно, а
прямая, соединяющая точки касания сторон AB и AC с полуокружностью, пересекает отрезки OM и ON в точках Q и P. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 60]
В остроугольном треугольнике ABC проведены высоты AA1 и CC1. Описанная окружность Ω треугольника ABC пересекает прямую A1C1 в точках A' и C'. Касательные к Ω, проведённые в точках A' и C', пересекаются в точке B'. Докажите, что прямая BB' проходит через центр окружности Ω.
В равносторонний треугольник ABC вписана полуокружность с центром O на стороне AB. Некоторая касательная к полуокружности пересекает стороны BC и CA в точках M и N соответственно, а
прямая, соединяющая точки касания сторон AB и AC с полуокружностью, пересекает отрезки OM и ON в точках Q и P.
Сторона AB параллелограмма ABCD равна 2, ∠A = 45°. Точки E и F расположены на диагонали BD, причём ∠AEB = ∠CFD = 90°, BF = 3/2 BE.
Сторона AB параллелограмма ABCD равна
Пусть AA1, BB1, CC1 – высоты остроугольного треугольника ABC, OA, OB, OC – центры вписанных окружностей треугольников AB1C1, BC1A1, CA1B1 соответственно; TA, TB, TC – точки касания вписанной окружности треугольника ABC со сторонами BC, CA, AB соответственно. Докажите, что все стороны шестиугольника TAOCTBOATCOB равны.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 60] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|