ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Используя результат задачи 61403, докажите неравенства:
в)
В параллелограмме ABCD диагональ AC перпендикулярна стороне
AB. Некоторая окружность касается стороны BC параллелограмма
ABCD в точке P и касается прямой, проходящей через вершины A и B
этого же параллелограмма, в точке A. Через точку P проведён
перпендикуляр PQ к стороне AB (точка Q — основание этого
перпендикуляра). Найдите угол ABC, если известно, что
площадь параллалограмма ABCD равна
Найдите наибольшее значение выражения
x Докажите равенства: При каких натуральных n ≥ 2 неравенство Два угла треугольника равны 40° и 80°. Найдите углы треугольника с вершинами в точках касания вписанной окружности со сторонами данного треугольника. Внутри квадрата расположены три окружности, каждая из которых касается внешним образом двух других, а также касается двух сторон квадрата. Докажите, что радиусы двух из данных окружностей одинаковы. На основании равнобедренного треугольника, равном 8, как на хорде построена окружность, касающаяся боковых сторон треугольника. |
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 772]
На основании равнобедренного треугольника, равном 8, как на хорде построена окружность, касающаяся боковых сторон треугольника.
Из одной точки проведены к кругу две касательные. Длина касательной равна 156, а расстояние между точками касания равно 120. Найдите радиус круга.
AB и AC – касательные к окружности с центром O, M – точка пересечения прямой AO с окружностью; DE – отрезок касательной, проведённой через точку M, между AB и AC. Найдите DE, если радиус окружности равен 15, а AO = 39.
В прямоугольной трапеции меньшее основание равно высоте, а большее основание равно a. Найдите боковые стороны трапеции, если известно, что одна из них касается окружности, проходящей через концы меньшего основания и касающейся большего основания.
Два угла треугольника равны 40° и 80°. Найдите углы треугольника с вершинами в точках касания вписанной окружности со сторонами данного треугольника.
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 772]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке