ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В точке X сидит преступник, а три полицейских, находящихся в точках A, B и C, блокируют его, то есть точка X лежит внутри треугольника ABC. Новый полицейский сменяет одного из них следующим образом: он занимает точку, равноудаленную от всех трёх полицейских, после чего один из троих уходит, и оставшаяся тройка по-прежнему блокирует преступника. Так происходит каждый вечер. Может ли случиться, что через какое-то время полицейские вновь займут точки A, B и C (известно, что точка X ни разу не попала на сторону треугольника)? Концы отрезка фиксированной длины движутся по двум скрещивающимся перпендикулярным прямым. По какой траектории движется середина этого отрезка? Внутри треугольника ABC взята точка P. Пусть da, db и dc — расстояния от точки P до сторон треугольника, Ra, Rb и Rc — расстояния от нее до вершин. Докажите, что
3(da2 + db2 + dc2)
В треугольнике ABC ∠A = 60°, точки M и N на сторонах AB и AC соответственно таковы, что центр описанной окружности треугольника ABC делит отрезок MN пополам. Найдите отношение AN : MB. Высоты AD и BE остроугольного треугольника ABC пересекаются в точке H. Описанная окружность треугольника ABH, пересекает стороны AC и BC в точках F и G соответственно. Найдите FG, если DE = 5 см.
В окружность вписан равнобедренный треугольник ABC, в
котором AB = BC и
|
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 330]
Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S.
На данной окружности зафиксированы две точки A и B, а точка M пробегает всю окружность. Из середины K отрезка MB опускается перпендикуляр на прямую MA. Основание этого перпендикуляра обозначается через P. Найдите геометрическое место точек P.
В прямоугольном треугольнике ABC проведена высота CH к гипотенузе AB. Биссектрисы углов CAB и BCH пересекаются в точке M, а биссектрисы углов CBA и ACH – в точке N. Докажите, что MN || AB.
В окружность вписан равнобедренный треугольник ABC, в
котором AB = BC и
В треугольнике ABC боковые стороны AB и BC равны.
Прямая, параллельная основанию AC, пересекает сторону AB в точке
D, а сторону BC в точке E, причём каждый из отрезков AD,
EC и DE равен 2. Точка F — середина отрезка AC, и точка G —
середина отрезка EC, соединены отрезком прямой. Известно, что
величина угол GFC равен
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 330]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке