Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В точке X сидит преступник, а три полицейских, находящихся в точках A, B и C, блокируют его, то есть точка X лежит внутри треугольника ABC. Новый полицейский сменяет одного из них следующим образом: он занимает точку, равноудаленную от всех трёх полицейских, после чего один из троих уходит, и оставшаяся тройка по-прежнему блокирует преступника. Так происходит каждый вечер. Может ли случиться, что через какое-то время полицейские вновь займут точки A, B и C (известно, что точка X ни разу не попала на сторону треугольника)?

Вниз   Решение


Концы отрезка фиксированной длины движутся по двум скрещивающимся перпендикулярным прямым. По какой траектории движется середина этого отрезка?

ВверхВниз   Решение


Внутри треугольника ABC взята точка P. Пусть da, db и dc — расстояния от точки P до сторон треугольника, Ra, Rb и Rc — расстояния от нее до вершин. Докажите, что

3(da2 + db2 + dc2)$\displaystyle \ge$(Rasin A)2 + (Rbsin B)2 + (Rcsin C)2.


ВверхВниз   Решение


В треугольнике ABC  ∠A = 60°,  точки M и N на сторонах AB и AC соответственно таковы, что центр описанной окружности треугольника ABC делит отрезок MN пополам. Найдите отношение  AN : MB.

ВверхВниз   Решение


Высоты AD и BE остроугольного треугольника ABC пересекаются в точке H. Описанная окружность треугольника ABH, пересекает стороны AC и BC в точках F и G соответственно. Найдите FG, если  DE = 5 см.

ВверхВниз   Решение


В окружность вписан равнобедренный треугольник ABC, в котором AB = BC и $ \angle$B = $ \beta$. Средняя линия треугольника продолжена до пересечения с окружностью в точках D и E ( DE || AC). Найдите отношение площадей треугольников ABC и DBE.

Вверх   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 330]      



Задача 107609

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Средняя линия треугольника ]
[ Медиана, проведенная к гипотенузе ]
[ Отношение площадей подобных треугольников ]
Сложность: 4-
Классы: 8,9,10

Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S.
Доказать, что из отрезков MaHb, MbHc, McHa можно составить треугольник, найти его площадь.

Прислать комментарий     Решение

Задача 108615

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

На данной окружности зафиксированы две точки A и B, а точка M пробегает всю окружность. Из середины K отрезка MB опускается перпендикуляр на прямую MA. Основание этого перпендикуляра обозначается через P. Найдите геометрическое место точек P.

Прислать комментарий     Решение

Задача 111625

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Прямоугольные треугольники (прочее) ]
[ Биссектриса угла ]
Сложность: 4-
Классы: 8,9

В прямоугольном треугольнике ABC проведена высота CH к гипотенузе AB. Биссектрисы углов CAB и BCH пересекаются в точке M, а биссектрисы углов CBA и ACH – в точке N. Докажите, что  MN || AB.

Прислать комментарий     Решение

Задача 52832

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

В окружность вписан равнобедренный треугольник ABC, в котором AB = BC и $ \angle$B = $ \beta$. Средняя линия треугольника продолжена до пересечения с окружностью в точках D и E ( DE || AC). Найдите отношение площадей треугольников ABC и DBE.

Прислать комментарий     Решение


Задача 54411

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

В треугольнике ABC боковые стороны AB и BC равны. Прямая, параллельная основанию AC, пересекает сторону AB в точке D, а сторону BC в точке E, причём каждый из отрезков AD, EC и DE равен 2. Точка F — середина отрезка AC, и точка G — середина отрезка EC, соединены отрезком прямой. Известно, что величина угол GFC равен $ \beta$. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .