Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

Вниз   Решение


В выпуклом четырёхугольнике ABCD точка L является серединой стороны BC, точка M является серединой AD, точка N является серединой стороны AB. Найдите отношение площади треугольника LMN к площади четырёхугольника ABCD.

ВверхВниз   Решение


На плоскости дано  n > 4  точек, никакие три из которых не лежат на одной прямой.
Докажите, что существует не менее    различных выпуклых четырёхугольников с вершинами в этих точках.

ВверхВниз   Решение


Решить в целых числах уравнение  x² + y² + z² = 4(xy + yz + zx).

ВверхВниз   Решение


На стороне острого угла KOM взята точка L между O и K. Окружность проходит через точки K и L и касается луча OM в точке M. На дуге LM, не содержащей точки K, взята точка N. Расстояния от точки N до прямых OM, OK и KM равны m, k и l соответственно. Найдите расстояние от точки N до прямой LM.

ВверхВниз   Решение


Из точки A, расположенной вне окружности, проведены две касательные AM и AN (M и N — точки касания) и секущая, пересекающая окружность в точках P и Q. Пусть L — середина PQ. Докажите, что $ \angle$MLA = $ \angle$NLA.

Вверх   Решение

Задачи

Страница: << 166 167 168 169 170 171 172 >> [Всего задач: 1282]      



Задача 54549

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Гомотетичные окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Диаметр, основные свойства ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место середин всех хорд, проходящих через данную точку окружности.

Прислать комментарий     Решение


Задача 35721

Темы:   [ Вспомогательная окружность ]
[ Неравенства с углами ]
[ Вписанный угол, опирающийся на диаметр ]
[ Диаметр, основные свойства ]
[ Четырехугольник (неравенства) ]
Сложность: 3+
Классы: 8,9

Докажите, что если в четырехугольнике два противоположные угла тупые, то диагональ, соединяющая вершины этих углов, меньше другой диагонали.
Прислать комментарий     Решение


Задача 52853

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Из точки A, расположенной вне окружности, проведены две касательные AM и AN (M и N — точки касания) и секущая, пересекающая окружность в точках P и Q. Пусть L — середина PQ. Докажите, что $ \angle$MLA = $ \angle$NLA.
Прислать комментарий     Решение


Задача 54132

Темы:   [ Пересекающиеся окружности ]
[ Средняя линия треугольника ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Найдите модуль разности отрезков BC и BD, если расстояние между центрами окружностей равно a, а центры окружностей лежат по одну сторону от общей хорды AB.

Прислать комментарий     Решение


Задача 66582

Темы:   [ Пятиугольники ]
[ Правильные многоугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9,10,11

В правильном пятиугольнике $ABCDE$ отмечена точка $F$ – середина $CD$. Серединный перпендикуляр к $AF$ пересекает $CE$ в точке $H$. Докажите, что прямая $AH$ перпендикулярна прямой $CE$.
Прислать комментарий     Решение


Страница: << 166 167 168 169 170 171 172 >> [Всего задач: 1282]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .