ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Около окружности радиуса R описана трапеция ABCD, меньшее основание BC которой равно a. Пусть E — точка касания окружности со стороной AB и BE = b. Найдите площадь трапеции. Решение |
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 769]
Дан прямоугольный треугольник ABC с катетами AC = 3 и BC = 4. Через точку C проведена прямая, лежащая вне треугольника и образующая с катетами углы, равные 45°. Найдите радиус окружности, проходящей через точки A, B и касающейся этой прямой.
Около окружности радиуса R описана трапеция ABCD, меньшее основание BC которой равно a. Пусть E — точка касания окружности со стороной AB и BE = b. Найдите площадь трапеции.
Через вершины A и B треугольника ABC проведена окружность радиуса 2, отсекающая от прямой BC отрезок, равный 4, и касающаяся прямой AC в точке A. Из точки B восставлен перпендикуляр к прямой BC до пересечения с прямой AC в точке F. Найдите площадь треугольника ABC, если BF = 2.
С помощью циркуля и линейки проведите через вершину треугольника прямую, делящую периметр треугольника пополам.
Четырёхугольник ABCD обладает тем свойством, что существует окружность, вписанная в угол BAD и касающаяся продолжений сторон BC и CD. Докажите, что AB + BC = AD + DC.
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|