Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Точки $P$ и $Q$ выбираются на стороне $BC$ треугольника $ABC$ так, что $BP=CQ$. Отрезки $AP$ и $AQ$ в пересечении со вписанной в треугольник окружностью образуют четырехугольник $XYZT$. Найдите геометрическое место точек пересечения диагоналей таких четырехугольников.

Вниз   Решение


В квадрате со стороной длины 1 выбрано 102 точки, из которых никакие три не лежат на одной прямой. Доказать, что найдётся треугольник с вершинами в этих точках, площадь которого меньше, чем 1/100.

ВверхВниз   Решение


Периметр ромба равен 8, высота равна 1. Найдите тупой угол ромба.

ВверхВниз   Решение


Точки K, L, M и N – середины сторон соответственно AB, BC, CD и AD параллелограмма ABCD.
Докажите, что четырёхугольник с вершинами в точках пересечения прямых AL, BM, CN и DK – параллелограмм.

ВверхВниз   Решение


Через точку, лежащую внутри треугольника, проведены три прямые, параллельные его сторонам. Обозначим площади частей, на которые эти прямые разбивают треугольник, так, как показано на рис. Докажите, что  a/$ \alpha$ + b/$ \beta$ + c/$ \gamma$ $ \geq$ 3/2.


ВверхВниз   Решение


В квадрат, площадь которого равна 18, вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как  1 : 2.
Найдите площадь прямоугольника.

ВверхВниз   Решение


В ромб вписана окружность. На какие четыре части она делится точками касания сторон, если острый угол ромба равен 37o?

ВверхВниз   Решение


ABCD — выпуклый четырехугольник площади S. Угол между прямыми AB и CD равен a, угол между AD и BC равен $ \beta$. Докажите, что

AB . CD sin$\displaystyle \alpha$ + AD . BC sin$\displaystyle \beta$ $\displaystyle \leq$ 2S $\displaystyle \leq$ AB . CD + AD . BC.


ВверхВниз   Решение


Автор: Белухов Н.

В треугольнике ABC  ALa и AMa – внутренняя и внешняя биссектрисы угла A. Пусть ωa – окружность, симметричная описанной окружности Ωa треугольника ALaMa относительно середины BC. Окружность ωb определена аналогично. Докажите, что ωa и ωb касаются тогда и только тогда, когда треугольник ABC прямоугольный.

ВверхВниз   Решение



Через середину ребра AB куба ABCDA1B1C1D1 с ребром, равным a, проведена плоскость, параллельная прямым BD1 и A1C1.

1) В каком отношении эта плоскость делит диагональ DB1?

2) Найдите площадь полученного сечения.

ВверхВниз   Решение


На продолжении ребра ST за точку T правильной четырёхугольной пирамиды SPQRT с вершиной S взята такая точка B , что расстояние от неё до плоскости SPQ равно . Найдите отрезок BT , если QR = 12 , а SR = 10 .

ВверхВниз   Решение


В равнобедренную трапецию с боковой стороной, равной 9, вписана окружность радиуса 4. Найдите площадь трапеции.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 129]      



Задача 115587

Темы:   [ Вспомогательные подобные треугольники ]
[ Площадь трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей подобных треугольников ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 2+
Классы: 8,9

Площадь трапеции ABCD равна 405. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь треугольника MON, если одно из оснований трапеции вдвое больше другого.

Прислать комментарий     Решение

Задача 52667

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
Сложность: 3
Классы: 8,9

Площадь равнобедренной трапеции, описанной около окружности, равна S, а высота трапеции в два раза меньше её боковой стороны.
Найдите радиус окружности.

Прислать комментарий     Решение

Задача 52671

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Симметрия помогает решить задачу ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Формулы для площади треугольника ]
Сложность: 3
Классы: 8,9

Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что  EK || AB  и найдите площадь трапеции ABKE.

Прислать комментарий     Решение

Задача 53253

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
Сложность: 3
Классы: 8,9

В равнобедренную трапецию с боковой стороной, равной 9, вписана окружность радиуса 4. Найдите площадь трапеции.
Прислать комментарий     Решение


Задача 53634

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Площадь трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Найдите площадь трапеции, если её диагонали равны 17 и 113, а высота равна 15.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 129]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .