Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Дан равносторонний треугольник со стороной a. Найдите отрезок, соединяющий вершину треугольника с точкой, делящей противоположную сторону в отношении 2 : 1.

Вниз   Решение


Автор: Зимин А.

В остроугольном треугольнике ABC угол C равен 60°, H – точка пересечения высот. Окружность с центром H и радиусом HC второй раз пересекает прямые CA и CB в точках M и N соответственно. Докажите, что прямые AN и BM параллельны (или совпадают).

ВверхВниз   Решение


На стороне AB треугольника ABC дана точка P. Проведите через точку P прямую (отличную от AB), пересекающую лучи CA и CB в таких точках M и N, что AM = BN.

ВверхВниз   Решение


Ортогональные проекции треугольника ABC на две взаимно перпендикулярные плоскости являются правильными треугольниками со сторонами 1. Найдите периметр треугольника ABC , если известно, что AB = .

ВверхВниз   Решение


Пусть M и N — середины оснований трапеции. Докажите, что если прямая MN перпендикулярна основаниям, то трапеция — равнобедренная.

ВверхВниз   Решение


В треугольнике ABC отмечены середины сторон AC и BC – точки M и N соответственно. Угол MAN равен 15°, а угол BAN равен 45°.
Найдите угол ABM.

ВверхВниз   Решение


Найдите периметр четырехугольника ABCD, в котором AB = CD = a, $ \angle$BAD = $ \angle$BCD = $ \alpha$ < 90o, BC $ \neq$ AD.

ВверхВниз   Решение


Отрезки AB и CD пересекаются. Докажите, что если отрезки AC, CB, BD и AD равны, то луч AB является биссектрисой угла CAD, луч CD – биссектрисой угла ACB, а CD перпендикулярно AB.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 352]      



Задача 53327

Темы:   [ Равные треугольники. Признаки равенства ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 2+
Классы: 8,9

Два отрезка AB и CD пересекаются в точке O, которая является серединой каждого из них. Докажите равенство треугольников ACD и BDC.

Прислать комментарий     Решение

Задача 53328

Тема:   [ Равные треугольники. Признаки равенства ]
Сложность: 2+
Классы: 8,9

Докажите равенство треугольников по двум сторонам и медиане, проведенной к одной из них.

Прислать комментарий     Решение

Задача 53329

Темы:   [ Равные треугольники. Признаки равенства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Ромбы. Признаки и свойства ]
Сложность: 2+
Классы: 8,9

Отрезки AB и CD пересекаются. Докажите, что если отрезки AC, CB, BD и AD равны, то луч AB является биссектрисой угла CAD, луч CD – биссектрисой угла ACB, а CD перпендикулярно AB.

Прислать комментарий     Решение

Задача 53335

Темы:   [ Равные треугольники. Признаки равенства ]
[ Правильный (равносторонний) треугольник ]
[ Поворот помогает решить задачу ]
Сложность: 2+
Классы: 8,9

На сторонах AB, BC и CA равностороннего треугольника ABC отложены равные отрезки AD, BE и CF. Точки D, E и F соединены отрезками.
Докажите, что треугольник DEF – равносторонний.

Прислать комментарий     Решение

Задача 53336

Темы:   [ Равные треугольники. Признаки равенства ]
[ Правильный (равносторонний) треугольник ]
Сложность: 2+
Классы: 8,9

Стороны BA, AC и CB равностороннего треугольника продолжены соответственно за точки A, C и B, на продолжениях отложены равные отрезки AD, CE и BF. Докажите, что треугольник DEF – равносторонний.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .